I'm trying to understand the many-body Green's functions, but first I want to understand Greens functions in QM. I'm reading this article, but I'm having trouble with eq. 17. The equation states: $$ \Psi(\mathbf r, t) = \int d^3\mathbf r' G(\mathbf r, t;\mathbf r', t')\Psi(\mathbf r', t') \tag{1} $$ (First question: Why do we integrate over $\mathbf r'$, but not $t'$?)
But $(1)$ does not follow from the definition of $G$, since the definition of $G$ is $$ \left[ i\hbar \partial_t + \frac{\hbar^2}{2m}\nabla^2 \right] G(\mathbf r, t;\mathbf r', t') = \delta(\mathbf r-\mathbf r')\delta(t-t') \tag{2} $$ and thus $$ \begin{align*} \Psi(\mathbf r, t) &= \int d^3\mathbf r'dt' \delta(\mathbf r-\mathbf r')\delta(t-t') \Psi(\mathbf r', t')\\ &= \int d^3\mathbf r'dt' \left[ i\hbar \partial_t + \frac{\hbar^2}{2m}\nabla^2 \right] G(\mathbf r, t;\mathbf r', t') \Psi(\mathbf r', t')\\ &= \left[ i\hbar \partial_t + \frac{\hbar^2}{2m}\nabla^2 \right] \int d^3\mathbf r'dt' G(\mathbf r, t;\mathbf r', t') \Psi(\mathbf r', t'). \end{align*} $$ Now if I suppose, that $(1)$ is true, then $$ \begin{align*} \Psi(\mathbf r, t) &= \left[ i\hbar \partial_t + \frac{\hbar^2}{2m}\nabla^2 \right] \int dt'\Psi(\mathbf r, t) \end{align*} $$ which is nonsense, because $\displaystyle{\int dt' = \infty}$. Also, because by definition, $$ \left[ i\hbar \partial_t + \frac{\hbar^2}{2m}\nabla^2 \right]\Psi(\mathbf r, t)=V(\mathbf r, t)\Psi(\mathbf r, t). $$ Question: How can I prove $(1)$ from the definition of $G$?