0

I know that inertia tensor of a sphere is

$$ 2mr^2/5\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $$

Now if I translate it into a coordinate (x,y,z). What will be the inertia tensor then ?

All I know is, after translation :

$$I_{new}=I_{old}-m*r^2$$ and here $r$ is a matrix, actually I want to know how can I calculate that matrix ?

Qmechanic
  • 201,751
Danial
  • 103

1 Answers1

2

Use the parallel axis theorem in vector/tensor form

$$ \mathbf{I}_{\rm new} = \mathbf{I}_{\rm old} + m \left[ \matrix{y^2+z^2 & -x y & -x z \\ -x y & x^2+z^2 & - y z \\ -x z & - y z & x^2+y^2 } \right] $$

where $\pmatrix{x\\ y \\z}$ is the location of $({\rm old})$ relative to $({\rm new})$.

For an example, see the end of this related answer (equation 4).

John Alexiou
  • 38,341
  • can you tell me why here, how the value of r came here, it's a 33 matrix, where you have given me a 13 matrix – Danial Dec 22 '19 at 05:53
  • You mean how $$ -\left[ \matrix{0 & -z & y \ z & 0 & -x \ -y & x & 0} \right] \left[ \matrix{0 & -z & y \ z & 0 & -x \ -y & x & 0} \right] = \left[ \matrix{y^2+z^2 & -x y & -x z \ -x y & x^2+z^2 & - y z \ -x z & - y z & x^2+y^2 } \right] $$ ? In that post $r$ is a 3×1 vector and $\tilde{r}$ is a 3×3 matrix. The overbar denotes the cross product matrix operator. – John Alexiou Dec 22 '19 at 07:09