For free particle with $V=0$ case we get $$<x_n,t_n;x_{n-1},t_{n-1}>=\frac{1}{w(\Delta t)}\exp \left [\frac{im(x_n-x_{n-1})^2}{2\hbar\Delta t}\right ] \tag{6.42}$$ given in eqn. 6.42 of Sakurai (2nd Edition p.127).
Then given $$<x_n,t_n;x_{n-1},t_{n-1}>|_{t_n=t_{n-1}} = \delta(x_n - x_{n-1})\tag{6.43}$$ in equation 6.43.
Then say we obtain $$\frac{1}{w(\Delta t)}=\sqrt{\frac{m}{2\pi i \hbar \Delta t}}.\tag{6.44}$$
How can I find the following constant without using "Propagator concept"?