how to consider friction force and calculate the equations of motion with E.L method.
the Euler- Lagrange equation are:
$$\begin{align*}
&L =T-U\\
&\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\vec{q}}}\right)-
\frac{\partial L}{\partial \vec{q}}=\left(\frac{\partial \vec{r}}{\partial \vec{q}}\right)^T\vec{f}_a+
\left(\frac{\partial \vec{g}_h}{\partial \vec{q}}\right)^T\vec{\lambda}_h
\end{align*}\tag 1$$
- $T$ kinetic energy
- $U$ potential energy
- $\vec{q}$ generalized coordinates
- $\vec{r}$ position vector
- $\vec{f}_a$ external forces
- $\vec{g}_h$ holonomic constrains
- $\vec{\lambda}_h$ holonomic constrain forces
I) the friction force is considered as external force.
II) the friction normal force is calculate with holonomic constraint equation.
Example:

a mass point slides on a circle path, with a friction between the mass and the path.
beginning with the position vector of the mass:
$$\vec{r}=\left[ \begin {array}{c} \rho\, \left( 1-\cos \left( {\frac {s}{\rho}
} \right) \right) \\ \rho\,\sin \left( {\frac {s}{
\rho}} \right) \end {array} \right]
$$
where $\rho$ is the circle radius and s the arc length.
the friction force $F\mu$ act towards the path tangent $\vec{t}$ with the sign apposite to the tangent velocity $v_t$
with :
$$\vec{t}=\frac{\partial \vec{r}}{\partial s}=\left[ \begin {array}{c} \sin \left( {\frac {s}{\rho}} \right)
\\\cos \left( {\frac {s}{\rho}} \right)
\end {array} \right]
$$
thus:
$$F\mu=\mu\,|N|\,\text{sign}(-v_t)$$
where $v_t=\vec{v}^T\,\vec{t}\quad,\vec{v}=\vec{\dot{r}}$
so the external force is:
$$\vec{f}_a=F\mu\,\vec{t}$$
to obtain the normal force N , we create a gap $q_N$ toward the normal direction $\vec{n}$, thus we have now two generalized coordinates $\vec{q}=[s,q_N]^T$
the mass position vector is now:
$$\vec{r}\mapsto \vec{r}+q_N\vec{n}$$
with:
$$n=\left[ \begin {array}{c} -\cos \left( {\frac {s}{\rho}} \right)
\\ \sin \left( {\frac {s}{\rho}} \right)
\end {array} \right]
$$
you can now obtain the kinetic energy and potential energy:
$$T=\frac{m}{2}\vec{\dot{r}}^T\vec{\dot{r}}$$
$$U=m\,g\,r_y$$
the holonomic constrain equation is:
$$g_h=q_N=0\quad
\Rightarrow\quad \dot{q}_N=0\quad,\ddot{q}_N=0$$
with equation (1) ,you can calculate the equation of motion and the normal force . you have two equations for two unknowns $ \ddot{s}\,,N=\lambda_h$
results:
with equation (1) you get:
$$m\,\ddot{s}+m\,g\,\cos\left(\frac{s}{\rho}\right)-F\mu=0\tag 2$$
and
$$m\,\ddot{q}_N+\frac{m\,\dot{s}^2}{\rho}+
m\,g\,\sin\left(\frac{s}{\rho}\right)-N=0\tag 3$$
with $\ddot{q}_N=0$
$ \Rightarrow$
$$N=m\,g\,\sin\left(\frac{s}{\rho}\right)-\frac{m\,\dot{s}^2}{\rho}$$
$$\ddot{s}-\frac{F\mu}{m}+g\,\cos\left(\frac{s}{\rho}\right)=0$$
Simulation

