In the book "Advanced Quantum Mechanics" by Franz Schwabl on page 280 you can find a formula (13.1.18c) which assumes linearity of time ordering operator $::$
$ :\phi\left(x\right)\phi\left(y\right):=:\left(\phi^{+}\left(x\right)+\phi^{-}\left(x\right)\right)\left(\phi^{+}\left(y\right)+\phi^{-}\left(y\right)\right):$
(here)
$=:\phi^{+}\left(x\right)\phi^{+}\left(y\right):+:\phi^{+}\left(x\right)\phi^{-}\left(y\right):+:\phi^{-}\left(x\right)\phi^{+}\left(y\right):+:\phi^{-}\left(x\right)\phi^{-}\left(y\right): $
$ = \phi^{+}\left(x\right)\phi^{+}\left(y\right)+\phi^{-}\left(y\right)\phi^{+}\left(x\right)+\phi^{-}\left(x\right)\phi^{+}\left(y\right)+\phi^{-}\left(x\right)\phi^{-}\left(y\right)$
You can find this formula in any advanced QFT textbook.
But we know $::$ is not linear because on the one hand we have
$ :a^{\dagger}aaa^{\dagger}:=a^{\dagger}a^{\dagger}aa $
But assuming linearity we get
$:a^{\dagger}aaa^{\dagger}: = :a^{\dagger}a\left(1+a^{\dagger}a\right):$
$= :a^{\dagger}a: + :a^{\dagger}aa^{\dagger}a:$
$= a^{\dagger}a + :a^{\dagger}\left(1+a^{\dagger}a\right)a: $
$=a^{\dagger}a + :a^{\dagger}a: + :a^{\dagger}a^{\dagger}aa: $
$=2a^{\dagger}a+a^{\dagger}a^{\dagger}aa $
Which implies 2=0.
Why do we assume linearity of $::$ if it's not consistent?