I'm studying in Ryder's book of QFT. I'm dealing with QM in the path integral approach and he is trying to prove that the propagator $K(x_f t_f;x_i t_i)$ is the Green function of the Schrodinger (S.) equation:
\begin{equation} \frac{\hbar^2}{2m} \frac{d^2}{dx_f^2}\psi(x_f t_f) + i \hbar \frac{\partial}{\partial t_f} \psi(x_f t_f) =V(x_ft_f) \psi(x_ft_f) \quad (1) \label{one} \end{equation}
We have a generic wave function that satisfies S. equation $\psi$ and we can rewrite it as (eq. 5.27)
\begin{equation} \psi(x_f t_f)= \phi(x_f t_f) - \frac{i}{\hbar}\int dx dt \; K_0(x_f t_f;x t)V(x,t)\psi(xt) \quad (2) \label{eq:2} \end{equation}
where $\phi(x_f t_f)$ is a free plane wave that therefore satisfies the free S. eq:
\begin{equation} \frac{\hbar^2}{2m} \frac{d^2}{dx_f^2}\phi(x_f t_f) + i \hbar \frac{\partial}{\partial t_f} \phi(x_f t_f) =0 \quad (3) \end{equation}
and $K_0$ is the free propagator. So plugging eq(1) into eq(2) and using eq (3) Ryder derives this
\begin{equation} \frac{\hbar^2}{2m} \frac{d^2}{dx_f^2}K_0(x_f t_f;x t)+ i \hbar \frac{\partial}{\partial t_f} K_0(x_f t_f;x t) = \frac{-i}{\hbar} \delta(x_f-x)\delta(t_f-t) \end{equation}
My problem is to get to this equation. Plugging (2) into (1) I can get as far as
\begin{equation} \frac{-i}{\hbar}\int dx dt \; \left[\frac{\hbar^2}{2m} \frac{d^2}{dx_f^2} + i \hbar \frac{\partial}{\partial t_f}\right] ( K_0(x_f t_f;x t)) \cdot V(xt) \psi(xt) = V(x_ft_f) \phi(x_ft_f) - \frac{i}{\hbar} V(x_ft_f) \int dx dt K_0(x_f t_f;x t)V(x,t)\psi(xt) \end{equation}
where I used (3) in the left hand side.