0

I am confused on few topics...

What is meant by "Frequency of Light"? Does the Photon(s) vibrate, that is known as its frequency? If the Photons vibrate, then they have a specific frequency, then What is meant by "Higher frequency light" as used in Photo-electric Effect? In which directions/axis do they vibrate to have a specific frequency. Why is it that nothing can go faster than the Speed of light. Does these two things have any relation to each other?

-Thanks.

devWaleed
  • 336

3 Answers3

1

The frequency of light refers to the relation $$\lambda\nu = c$$ where $\lambda$ is the wavelength, $c$ the speed of light and $\nu$ the frequency of the light (also sometimes denoted by $f$). Note that this seems to suggest that light consists of waves. However, this is misleading at best. Light also exhibits particle-like behaviour. The photo-electric effect is a typical example, since it was this experiment that led Einstein to postulate the existence of photons, "light-particles" if you will.$^1$

More in detail, when light shines on the surface of some metals, emission of electrons is observed - the electrons get "knocked out of the metal surface" so to speak. This is known as the photo-electric effect. Before Einstein's explanation in terms of photons it was considered paradoxical that this emission of electrons did not depend on the amplitude of the incident light, rather it depended on its frequency. Einstein clarified this problem by assuming the existence of photons, individual entities (quanta) with particle-like attributes, specifically with their energy given by

$$E = h\nu,$$

where $h$ is Planck's constant. This relation is exactly what Einstein used to resolve the paradox: only a photon with a sufficiently high frequency $\nu$ has enough energy $E$ to knock an electron out of the material it is incident on.

As for your second question, why $c$ is the maximum speed and if there is a relation between this and the frequency of light, this answer could be a place to start. Indeed, $c$ is called the speed of light and light in a vacuum always travels at speed $c$, but this is not a unique property of light: all massless particles must travel at speed $c$. It just so happens that we discovered this in light first, which is why $c$ is commonly called the speed of light. The group velocity of a single-frequency wave is $v_g=\lambda\nu$ and $v_g=c$ for light waves in a vacuum. As to why nothing can travel faster than $c$, this is actually a postulate of special relativity and as such we don't have a theoretical justification but we do have loads of strong experimental evidence in the form of results that match the predictions of special (and general) relativity exceptionally well. Some reading material: If I run along the aisle of a bus traveling at (almost) the speed of light, can I travel faster than the speed of light? and Why does the (relativistic) mass of an object increase when its speed approaches that of light?.


$^1$ Although you hear people call them that, it's misleading to speak of particles because it suggests light consists of particles. A more careful term to use is quanta, and the physical nature of these quanta appears to be some blend of particle-like characteristics and wave-like properties.

Wouter
  • 5,259
0

Photon is like energy smog.

Please read below link ; https://www.physicsforums.com/threads/what-does-the-frequency-of-a-photon-actually-mean.90492/

He explained it wonderfully as:

it makes sense to think of the wavelength as the "size" of the photon (or at least as something proportional to it). This may seem strange, but it is at least consistent with e.g. the fact that microwaves (with wavelengths of order 1 cm) won't go through a metal net with millimeter-sized holes (like the net that covers the window of your microwave oven), but they will go through a net with much larger holes.

-1

When photon hit the surface of the metal they transfer their energy to the metal free electrons. When metal electron get the higher frequency near about to that of light they emit another kind of light. Rishabh raj mishra

  • 3
    Could you please elaborate a little? This answer is very short, and not easy to understand (at least not for me). – Danu Oct 25 '14 at 13:43