I am trying to derive the equations of motion for a complex scalar field given by: $$L = \partial_\mu \phi^* \partial^\mu \phi - m^2 \phi^*\phi$$
Euler-Lagrange equation: $$\partial_\mu \frac{\delta L}{\delta(\partial_\mu \phi)}-\frac{\delta L}{\delta\phi} = 0.$$
From $\delta L / \delta\phi$ I get $\delta/\delta \phi (-m^2\phi^*\phi) = -m^2(1^*\cdot\phi + \phi^*\cdot1)$.
From $\partial_\mu \delta L/\delta(\partial_\mu\phi)$
I get:
$$\partial_\mu \frac{\delta}{\delta(\partial_\lambda \phi)}(\partial_\mu \phi^* \partial^\mu \phi) = \partial_\mu \frac{\delta}{\delta(\partial_\lambda \phi)}(\partial_\mu \phi^* g^{\mu\nu} \partial_\nu \phi) = \partial_\mu \big(\frac{\delta(\partial_\mu \phi^*)}{\delta(\partial_\lambda \phi)}g^{\mu\nu} \partial_\nu \phi + \partial_\mu \phi^* g^{\mu\nu}\frac{\delta( \partial_\nu \phi)}{\delta(\partial_\lambda \phi)} \big)=$$ $$= \partial_\mu \big( (\delta^\lambda_\mu)^*\cdot g^{\mu\nu}\partial_\nu \phi + \partial_\mu\phi^*g^{\mu\nu}\cdot \delta^\lambda_\nu \big) = \partial_\mu \big(g^{\lambda\nu}\partial_\nu \phi + \partial_\mu\phi^*g^{\mu\lambda}\big) =\partial_\lambda\big(\partial^\lambda\phi + \partial^\lambda\phi^*\big) =\partial^2(\phi+\phi^*)$$
Putting them together gives: $$ (\partial^2+m^2)(\phi+\phi^*) = 0 $$
Taking the same derivatives but with the complex conjugate provides the same equation. Now, the answer is supposed to be:
$$\begin{cases} (\partial^2 + m^2)\phi = 0 \\ (\partial^2 + m^2)\phi^* = 0 \end{cases}$$
In other words, it seems that I must treat the complex conjugate $\phi^*$ constant when differentiating with regards to $\phi$ and vice versa.
What am I missing...?