Wick Rotation helps to solve the problem of the convergence of the path integral, by changing the integral contour in the complex plane. But my question is:
- In the scalar field path integral, the field function is real-valued. If we change the parameter from $t$ to $-i\tau$ as $\phi(t,x)$ to $\phi(-i\tau,x)$, is it possible to change the original real-valued function to complex-valued function? But the convergence requires that integrand of path integral: \begin{equation} W_{\mathrm{E}}[J]=\mathcal{N}_{\mathrm{E}} \int \mathcal{D} \phi \exp \left[\frac{\mathrm{i}}{\hbar}(-\mathrm{i}) \int \mathrm{d}^{4} x_{\mathrm{E}}\left(\mathcal{L}\left(\phi, \mathrm{i} \frac{\partial \phi}{\partial x_{4}}\right)+J \phi\right)\right] \end{equation} as totally real valued.
- Where the Lagrangian turns out to be: \begin{equation} \begin{aligned} \mathcal{L} &=\frac{\hbar^{2}}{2}\left(\partial_{0} \phi \partial_{0} \phi-\nabla \phi \cdot \nabla \phi\right)-\frac{1}{2} m^{2} \phi^{2}-V(\phi) \\ &=-\left[\frac{\hbar^{2}}{2}\left(\partial_{4} \phi \partial_{4} \phi+\nabla \phi \cdot \nabla \phi\right)+\frac{1}{2} m^{2} \phi^{2}+V(\phi)\right] \\ &=-\left[\frac{\hbar^{2}}{2} \partial_{\mathrm{E} \mu} \phi \partial_{\mathrm{E} \mu} \phi+\frac{1}{2} m^{2} \phi^{2}+V(\phi)\right] \end{aligned} \end{equation}
- Greiner's Textbook "Field Quantization" states: \begin{equation} W_{\mathrm{E}}[J]=\mathcal{N}_{\mathrm{E}} \int \mathcal{D} \phi \exp \left[-\frac{1}{\hbar} \int \mathrm{d}^{4} x_{\mathrm{E}}\left(\frac{\hbar^{2}}{2} \partial_{\mathrm{E} \mu} \phi \partial_{\mathrm{E} \mu} \phi+\frac{1}{2} m^{2} \phi^{2}+V(\phi)-J \phi\right)\right] \end{equation} The integrand is real-valued,which require the funtion $\phi$ must be real-valued function.
I read many posts about the trick, but since the contour-integral give the equivalence of the real-axis integral and pure-imaginary axis integral, how it could be possible to change the convergence of integral without requiring the scalar-field function remains to be real-valued, or just analytic continuation?
Some people suggest there exist some deep relation between Euclidean Field Theory and Minkowskian Field Theory involving the Axiomatic description of QFT. I suspect that Wick Rotation is just a mathematical-equivalence trick, I don't know how wick rotation could be rigorously built or just an mapping relation?