4

According to the original paper of Glauber and Cahill

Ordered Expansions in Boson Amplitude Operators. K. E. Cahill and R. J. Glauber. Phys. Rev. 177 no. 5, 1857-1881 (1969).

the displacement operator's matrix elements with respect to the number-basis read:

$$ ⟨m|D(\alpha)|n⟩=\sqrt{\frac{n!}{m!}}\cdot\alpha^{m-n}\cdot e^{-|\alpha|^2/2}\cdot L_n^{(m-n)}\left(|\alpha|^2\right)\quad\text{when }m\geq n, $$

where $L_n^{(k)}$ are the associated Laguerre polynomials. According to their definition the associated Laguerre polynomials are defined for $k\geq0$, or $k>-1$ if we look at their scipy implementation. However, it seems to me as if we come into troubles if we want to find a matrix representation with respect to the number basis, because then we would need all matrix elements, especially those with $n>m$.

What am I missing? How do the matrix elements for $n>m$ look like?

Thank you in advance for your help!

glS
  • 14,271
pcalc
  • 505

2 Answers2

6

The displacement operator satisfies the identity $$ \hat{D}^{\dagger}(\alpha) = \hat{D}(-\alpha). $$ Therefore, when $m<n$, \begin{align*} ⟨m|\hat{D}(\alpha)|n⟩ &=\left(⟨n|\hat{D}^{\dagger}(\alpha)|m⟩\right)^* =\left(⟨n|\hat{D}(-\alpha)|m⟩\right)^*\\ &=\sqrt{\frac{m!}{n!}}(-\alpha^*)^{n-m}e^{-\tfrac12|-\alpha|^2}L_m^{(n-m)}(|-\alpha|^2)\\ &=\sqrt{\frac{m!}{n!}}(-\alpha^*)^{n-m}e^{-\tfrac12|\alpha|^2}L_m^{(n-m)}(|\alpha|^2). \end{align*}

march
  • 7,644
2

Remember the definition $D(\alpha)=\exp(\alpha a^\dagger - \alpha^* a)$. Using BCH we can rewrite this in two ways: $$D(\alpha) = e^{-|\alpha|^2/2}e^{\alpha a^\dagger}e^{-\alpha^* a} = e^{|\alpha|^2/2}e^{-\alpha^* a}e^{\alpha a^\dagger}.\tag1\label1$$ The matrix elements of the displacement operator in the number basis read $$\langle n|D(\alpha)|m\rangle = \frac{1}{\sqrt{n! m!}}\langle a^n D(\alpha) a^{\dagger m}\rangle,$$ where $\langle \cdot\rangle$ denotes the vacuum expectation value. We can go two ways for this calculation, using the two different ways to write $D(\alpha)$ given in \eqref{1}.


Using $D(\alpha) = e^{-|\alpha|^2/2}e^{\alpha a^\dagger}e^{-\alpha^* a}$

We have $$\langle a^n e^{\alpha a^\dagger}e^{-\alpha^* a} a^{\dagger m}\rangle = \sum_{i=0}^m\frac{(-\alpha^*)^i}{i!}\langle a^n e^{\alpha a^\dagger} a^i a^{\dagger m}\rangle = \sum_{i=0}^m\sum_{j=0}^\infty \frac{(-\alpha^*)^i\alpha^j}{i!j!}\langle a^n a^{\dagger j} a^i a^{\dagger m}\rangle.\label{sum1}\tag2$$ The expectation value $\langle a^n a^{\dagger j} a^i a^{\dagger m}\rangle$ is only nonzero when $n+i=j+m$. This allows to collapse the sum over $j$ replacing $j=n+i-m$, with the additional constraint that we must have $j\ge0$, which thus translates into $i\ge m-n$. But $i$ must also be positive, while $m-n$ might not be. We thus conclude that the appropriate constraint on $i$ is $\max(0,m-n)\le i\le m$. In summary, \eqref{sum1} becomes $$\langle a^n e^{\alpha a^\dagger}e^{-\alpha^* a} a^{\dagger m}\rangle = \sum_{i=\max(0,m-n)}^m \frac{(-\alpha^*)^{i}\alpha^{n+i-m}}{i!(n+i-m)!} \langle a^n a^{\dagger(n+i-m)}a^i a^{\dagger m}\rangle$$

We then see that $$\langle a^n a^{\dagger(n+i-m)}a^i a^{\dagger m}\rangle = \sqrt{m!\frac{m!}{(m-i)!}\frac{((m-i)+(n+i-m))!}{(m-i)!}n!} = \frac{m!n!}{(m-i)!},$$ where we used the identities $$a^{\dagger j}|\ell\rangle = \sqrt{\frac{(\ell+j)!}{\ell!}}|\ell+j\rangle, \qquad a^j |\ell\rangle = \sqrt{\frac{\ell!}{(\ell-j)!}}|\ell-j\rangle \,\,\,\text{(for $\ell\ge j$)}.$$ We conclude that $$\langle a^n e^{\alpha a^\dagger}e^{-\alpha^* a} a^{\dagger m}\rangle = \sum_{i=\max(0,m-n)}^m (-\mu)^i \alpha^{n-m}\binom{m}{i}\binom{n}{m-i}(m-i)!,$$ where $\mu\equiv|\alpha|^2$, and $$\langle n|D(\alpha)|m\rangle = \frac{e^{-\mu/2}}{\sqrt{n!m!}} \sum_{i=\max(0,m-n)}^m (-\mu)^i \alpha^{n-m}\binom{m}{i}\binom{n}{m-i}(m-i)!$$ The summation can actually be simplified using the range $\sum_{i=0}^m$, as the corresponding terms vanish whenever $i< m-n$ anyway, due to the $\binom{n}{m-i}$ factor.

glS
  • 14,271
  • This is a very interesting and thoughtful response. Thank you very much for this. I was wondering if you knew anything about the limiting behavior of $|\langle n|D(\alpha)|m\rangle|^{2}$. I am wondering if this item converges as $n,m \rightarrow \infty$. – Hldngpk Jan 26 '23 at 04:52