I'm trying to verify that, using Schwarzschild metric and using Newton mechanics, the same velocity over time for an object that is fallen to a planet in straight line, until some amount of approximation.
My objective: use Schwarzschild metric to analyze some basic problem (free fallen object speed in this case) and verify the answer comparing it with the well-known Newtonian one.
First step is Newton one. Assume object fallen from infinite directly to the center of the planet, no initial speed. By conservation of kinetic plus potential energy:
$\frac{1}{2}mv^2 - G\frac{Mm}{r} = 0$,
$\frac{dr}{dt} = \sqrt{\frac{2GM}{r}} = c\sqrt{\frac{r_s}{r}}$
$ t = \frac{2}{3c} \sqrt{\frac{r^3}{r_s}} + \textit{constant} $
where $r$ is the altitude of the object and $r_s$ is the Schwarzschild radius ( its expression and remainders I will use can be found here ). Valid when $r \ge $ planet radios $ \ge r_s $.
In Schwarzschild metric, when no angular momentum, we have:
$\left( 1 - \frac{r_{\rm s}}{r} \right) \frac{dt}{d\tau} = \frac{E}{m c^{2}}$ and
$\left( \frac{dr}{d\tau} \right)^{2} = \frac{E^{2}}{m^{2}c^{2}} - \left( 1 - \frac{r_{\rm s}}{r} \right) c^{2} $
combining these expression we obtain:
$\frac{dr}{dt} = \frac{dr}{d\tau} \frac{d\tau}{dt} = c \left( 1 - \frac{r_{\rm s}}{r} \right) \sqrt{1 - \left( 1 - \frac{r_{\rm s}}{r} \right) \left( \frac{mc^2}{E} \right) ^2 } $
I can not see how this expression could approximate to the one in Newton mechanics.
Could be related that in the case of $E=mc^2$ and $h=0$, wikipedia gives a value of the proper time equal to the $t(r)$ found using classic mechanics:
$ \tau = \frac{2}{3c} \sqrt{\frac{r^3}{r_s}} + \textit{constant} $
$$c\left(1 - \frac{r_s}{r}\right)\sqrt{1-\left(1 - \frac{r_s}{r}\right)\frac{m^2c^4}{E^2}}\rightarrow c(1)\sqrt{1-1+\frac{r_s}{r}}=c\sqrt{\frac{r_s}{r}} $$
– Alfred Centauri May 20 '20 at 19:07