The lorentz transformation matrix (for all 3 spatial axes, not just a single dimension boost) appears to be commonly defined as the following: $$ \begin{bmatrix} \gamma &-\gamma v_x/c &-\gamma v_y/c &-\gamma v_z/c \\ -\gamma v_x/c&1+(\gamma-1)\dfrac{v_x^2} {v^2}& (\gamma-1)\dfrac{v_x v_y}{v^2}& (\gamma-1)\dfrac{v_x v_z}{v^2} \\ -\gamma v_y/c& (\gamma-1)\dfrac{v_y v_x}{v^2}&1+(\gamma-1)\dfrac{v_y^2} {v^2}& (\gamma-1)\dfrac{v_y v_z}{v^2} \\ -\gamma v_z/c& (\gamma-1)\dfrac{v_z v_x}{v^2}& (\gamma-1)\dfrac{v_z v_y}{v^2}&1+(\gamma-1)\dfrac{v_z^2} {v^2} \end{bmatrix} $$ I tried to derive it myself by combining the matrices for the individual boost directions and making $v=|\vec{v}|$and ended up at $$ \begin{bmatrix} ct' \\ x' \\ y' \\ z' \\ \end{bmatrix} = \begin{bmatrix} \gamma & -\beta_x\gamma& -\beta_y\gamma & -\beta_z\gamma \\ -\frac{\beta_y} {\gamma_{v_x}} & \frac{1}{\gamma_{v_x}} & 0 & 0 \\ -\frac{\beta_y}{\gamma_{v_y}} & 0 & \frac{1}{\gamma_{v_y}} & 0\\-\frac{\beta_z}{\gamma_{v_z}} & 0 & 0 & \frac{1}{\gamma_{v_z}} \\ \end{bmatrix} \begin{bmatrix} ct \\ x \\ y \\ z \\ \end{bmatrix} $$ Where $\gamma = \displaystyle\frac{1}{\sqrt{1-\displaystyle\frac{|\vec{v}|^2}{c^2}}} $ and $\gamma_{v_x} = \displaystyle\frac{1}{\sqrt{1-\displaystyle\frac{v_x^2}{c^2}}}$
2 questions. Where do the bottom right 9 terms come from in the common definition and why is the top $\gamma$ and not $\frac{1}{\gamma}$ given that $l′=\frac{l}{\gamma}$ but $t′=t\gamma$
$$y'= -ct\beta_y\gamma_{v_y} + y\gamma_{v_y}, ~~ \text{let}~~ v_y =0$$ $$=-ct*0 + y$$ $$=y$$ same with z
– Lewis Kelsey Jul 16 '20 at 01:45