0

There are some mistakes I think in the figure of Wikipedia on particle interactions in standard model: https://en.wikipedia.org/wiki/Mathematical_formulation_of_the_Standard_Model#Alternative_presentations_of_the_fields

It is more precise if we represent the particles in terms of left-handed doublet or right-handed singlet --- question --- are there such cartoon figures available that correctly reflect the elementary particle interactions?

enter image description here

Some Mistakes:

  1. The $Z$ boson does interact with the photon $\gamma$ through the tree level with two $W$ bosons -- but this figure shows no such interactions.

  2. The $Z$ boson does interact with the $Z$ boson through the tree level with two $W$ bosons -- but this figure shows no such interactions.

  3. The photon $\gamma$ does interact with the photon $\gamma$ through the tree level with two $W$ bosons -- but this figure shows no such interactions.

e.g. To justify the mistakes 1 and 2 and 3, we can take X and Y to be $Z$ and or the photon $\gamma$, the tree level interaction shows For mistakes 1 and 2 and 3, we can take X and Y to be <span class=$Z$ and or the photon $\gamma$ " />

  1. Moreover, I am not sure how The charged leptons electrons interact with neutrinos -- it only occurs when we have the leptons in the doublet of weak SU(2)? In that case, it is more precise if we represent the particles in terms of left-handed doublet or right-handed singlet (so we can see what left-handed or right-handed particles interacting with --- are there such cartoon figures available that correctly reflect the elementary particle interactions?
  • Cf. this. Basically it is tricky to represent quartic couplings, but the closed loop off W does represent 1. Sticking a loop on Z and γ would create more misconceptions than it would resolve. When it comes to fermion chiralities, extra baroque complications again would not explain anything that the reader does not already know. This is a crib-sheet summary, not a textbook, but I agree it takes a special warped mind avoidant of QFT to make / read, such. – Cosmas Zachos Jul 16 '20 at 20:21
  • thanks - i probe more -- It is more precise if we represent the particles in terms of left-handed doublet or right-handed singlet --- question --- are there such cartoon figures available that correctly reflect the elementary particle interactions? --- it will be nice such figures are available... – ann marie cœur Jul 16 '20 at 20:25
  • Never seen such, and I indicated that you then have to split the full quarks coupling to the gluons and their left-chiral components coupling to the W, and as for the Z... a disaster. Such pictures are made and enjoyed only by crowds prizing complication. Recall "flavor basis" neutrinos are doubly misleading as well... Hard to see how to save such stunts... – Cosmas Zachos Jul 16 '20 at 20:31
  • Photons don't interact. Higher order processes would involve a photon decay that is prohibited for massless particles by Special Relativity, because they don't experience time. This is exactly how the neutrino oscillation has proved that neutrinos are massive. – safesphere Jul 16 '20 at 22:13
  • @safesphere, there is a tree level with four gauge bosons, photon-photon-W+-W- check Feynman rule. – ann marie cœur Jul 16 '20 at 23:58
  • You are missing my point. The rule you are referring to is forbidden for photons by Special Relativity. I know this is commonly misunderstood, but the "photon-photon physics" is a misconception. Photons cannot decay or be absorbed by non-existing "virtual particles". – safesphere Jul 17 '20 at 00:44

0 Answers0