Consider the Hamiltonian $H = -J_\text{F}S^{(1)}_zS^{(2)}_z + J_{AF}S^{(1)}_zS^{(2)}_z$, describing the graph
Here, F means ferromagnetic and AF means antiferromagnetic interactions. I am having problem with the value of $S^{(1)}_zS^{(2)}_z$.Someone suggested to me that $$S^{(1)}_z=\frac{1}{2}\begin{pmatrix} -1 & 0 &0 &0 \\ 0&-1 &0 &0 \\ 0 &0 &1 &0 \\ 0 &0 &0 &1 \end{pmatrix},\quad S^{(2)}_z=\frac{1}{2}\begin{pmatrix} -1 & 0 &0 &0 \\ 0&1 &0 &0 \\ 0 &0 &-1 &0 \\ 0 &0 &0 &1 \end{pmatrix},$$ and therefore $$S^{(1)}_z\cdot S^{(1)}_z=\frac{1}{4}\begin{pmatrix} 1 & 0 &0 &0 \\ 0&-1 &0 &0 \\ 0 &0 &-1 &0 \\ 0 &0 &0 &1 \end{pmatrix}.$$
On the other hand, from page 7 of these notes on Pauli spin matrices, I know that for two spin systems $$\Sigma_z = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ \end{pmatrix}.$$ I asked the person but never got a reply. I don't see what is the difference between $S^{(1)}_z\cdot S^{(1)}_z$ and $\Sigma_z$; when I should use what?