I'm doing a project where I want to calculate the moment of inertia for some objects. I've broken the objects down into simple objects like cubes, spheres, cylinders, etc -- things I know the moment of inertia tensor for. My plan was to take these smaller parts and "glue them together." Since I know the inertia tensors for these simpler shapes and I thought moment of inertia was additive, I thought I could sum them and get the moment of inertia for the composite object. However, the following thought experiment has convinced me I'm mistaken.
Suppose I have a solid box (aka cuboid) with height $h$, width $w$, length $\ell$, and mass $m$. Now, suppose I cut this solid box in two, so the height is now $\tfrac{1}{2}h$ for each half box and similarly the mass for each is $\tfrac{1}{2}m$. The moment of inertia tensor for a solid box is
$$\mathbf{I}_{cube} = \begin{bmatrix} \frac{1}{12} m (h^2 + d^2) & 0 & 0\\ 0& \frac{1}{12} m (d^2 + w^2) & 0\\ 0& 0& \frac{1}{12} m (w^2 + h^2)\\ \end{bmatrix} $$
So for each half box, denoted by an index $i\in \lbrace 1,2\rbrace$, the tensor should be
$$\mathbf{I}_i = \begin{bmatrix} \frac{1}{12} \left(\frac{m}{2}\right) \left( \left(\frac{h}{2}\right)^2 + d^2\right) & 0 & 0\\ 0& \frac{1}{12} \left(\frac{m}{2}\right) (d^2 + w^2) & 0\\ 0& 0& \frac{1}{12} \left(\frac{m}{2}\right) \left(w^2 + \left(\frac{h}{2}\right)^2\right)\\ \end{bmatrix} $$
So now suppose I meld the two halves back together, thus restoring my initial cube. If moment of inertia is additive, then I should be able to sum $\mathbf{I}_1$ and $\mathbf{I}_2$ and get the original tensor of the cube. However, you can see this doesn't happen.
$$\begin{align} \mathbf{I}_1 + \mathbf{I}_2 &= 2 \begin{bmatrix} \frac{1}{12} \left(\frac{m}{2}\right) \left( \left(\frac{h}{2}\right)^2 + d^2\right) & 0 & 0\\ 0& \frac{1}{12} \left(\frac{m}{2}\right) (d^2 + w^2) & 0\\ 0& 0& \frac{1}{12} \left(\frac{m}{2}\right) \left(w^2 + \left(\frac{h}{2}\right)^2\right)\\ \end{bmatrix}\\&= \begin{bmatrix} \frac{1}{12} m\left( \left(\frac{h}{2}\right)^2 + d^2\right) & 0 & 0\\ 0& \frac{1}{12} m (d^2 + w^2) & 0\\ 0& 0& \frac{1}{12} m \left(w^2 + \left(\frac{h}{2}\right)^2\right)\\ \end{bmatrix}\\ &\ne \mathbf{I}_{cube} \end{align}\\ $$
Why is this the case? In what sense is moment of inertia additive?