$|\Psi (0)\rangle$ is not necessarily an eigenstate of H , however, because H is time-independent, the evolution of $|\psi \rangle$ is
$\displaystyle |{\Psi (t)}\rangle = e^{-iHt/\hbar } |{\Psi (0)}\rangle = \Big(1 + \frac{-iHt}{\hbar } + \frac{1}{2}\left(\frac{-iHt}{\hbar }\right)^2 + \cdots \Big) |{\Psi (0)}\rangle \, .$
Thus,
$\displaystyle \begin{split} \langle {\Psi (0)} | {\Psi (t)} \rangle & = 1 + \frac{-it}{\hbar } \langle {\Psi (0)}H|{\Psi (0)}\rangle + \frac{-t^2}{2\hbar ^2}\langle {\Psi (0)}H^2|{\Psi (0)}\rangle + O(t^3) \\ & = 1 + \frac{-it}{\hbar } \langle H\rangle + \frac{-t^2}{2\hbar ^2}\langle H^2\rangle + O(t^3) \\ & = 1 + \frac{-it}{\hbar } \langle H\rangle + \frac{-t^2}{2\hbar ^2}\Big((\Delta H)^2 + \langle H \rangle ^2\Big) + O(t^3) \end{split}$
where expectation values $\langle H \rangle$ and $\langle H^2 \rangle$ are taken with respect to $| \psi (0) \rangle$, and in the last step I have used that $(\Delta H)^2=\langle H^2 \rangle−\langle H \rangle^2 $.
Thus, to order $t^2$,
$\displaystyle \begin{split} \big | \langle {\Psi (0)}|{\Psi (t)}\rangle \big |^2 & = \Big[1 + \frac{-it}{\hbar } \langle H\rangle + \frac{-t^2}{2\hbar ^2}\Big((\Delta H)^2 + \langle H \rangle ^2\Big)\Big] \\ & \qquad \qquad \Big[1 + \frac{it}{\hbar } \langle H\rangle + \frac{-t^2}{2\hbar ^2}\Big((\Delta H)^2 + \langle H \rangle ^2\Big)\Big] + O(t^3) \\ & = 1 + \frac{-t^2}{\hbar ^2}\Big((\Delta H)^2 + \langle H \rangle ^2\Big) + \frac{t^2}{\hbar ^2}\langle H \rangle ^2 + O(t^3) \\ & = 1 - \frac{t^2}{\hbar ^2}(\Delta H)^2 + O(t^3) \, . \end{split}$
As an interesting side point, if t is very small then $\big | \langle {\Psi (0)}|{\Psi (t)}\rangle \big |^2 \approx 1$ (to order t ). In other words, if we measure whether $\langle \psi (t) \rangle$ is in the state $\langle \psi (0) \rangle$ after only letting the system evolve for a very short time, we expect with high probability to indeed find an outcome of $| \psi (0) \rangle$, i.e. the system effectively hasn't evolved at all! If, after letting the system evolve for another very short time, we measure again, we again likely expect to find the state to be $| \psi (0) \rangle$. This is the source of the so-called quantum Zeno effect; if you continually measure a quantum state, it does not change, or colloquially, a watched quantum pot never boils