$\vec F$ = force vector,
$\vec A$ = area vector,
$P$ = pressure
Mathematically $\vec F = P \vec A$. By product rule we get,
$$ {\rm d}\vec F = P {\rm d}\vec A + \vec A {\rm d}P $$
Why do we often compute Force over a surface as $\vec F = \int P {\rm d}\vec A$ whilst ignoring the term $\int \vec A {\rm d}P$ ?