
you can obtain the spatial Lorentz transformation by applying two rotations .
we want to "bring" the x axes align to the x' axes, this can done by two rotation , first rotate about the z axes with the angle $\varphi$ and then rotate about the new y axes with the angel $-\psi$. thus:
the transformation matrix about the z-axes is:
$$S_z=\left[ \begin {array}{cccc} 1&0&0&0\\ 0&\cos
\left( \varphi \right) &-\sin \left( \varphi \right) &0
\\ 0&\sin \left( \varphi \right) &\cos \left(
\varphi \right) &0\\ 0&0&0&1\end {array} \right]
$$
and about the new y-axes is:
$$S_y=\left[ \begin {array}{cccc} 1&0&0&0\\ 0&\cos
\left( \psi \right) &0&-\sin \left( \psi \right)
\\ 0&0&1&0\\ 0&\sin \left( \psi
\right) &0&\cos \left( \psi \right) \end {array} \right]
$$
with :
$$\varphi=\arctan\left(\frac{v_y}{v_x}\right)$$
$$\psi=\arctan\left(\frac{v_x}{\sqrt{v_x^2+v_y^2}}\right)$$
and the boost vector $$\vec{v}=\begin{bmatrix}
v_x \\
v_y \\
v_z \\
\end{bmatrix}$$
you obtain the spatial Lorentz transformation :
$$L_D=S_z\,S_y\,L\,S_y^T\,S_z^T$$
with the Lorentz transformation $L$
$$L=\left[ \begin {array}{cccc} \gamma&\gamma\,v&0&0\\
\gamma\,v&\gamma&0&0\\ 0&0&1&0\\ 0
&0&0&1\end {array} \right]
$$
$\Rightarrow$
$$L_D=\left[ \begin {array}{cccc} \gamma&\gamma\,v_{{x}}&\gamma\,v_{{y}}&
\gamma\,v_{{z}}\\ v_{{x}}{\gamma}^{2}&{\frac {\gamma
\,{v_{{x}}}^{2}+{v_{{y}}}^{2}+{v_{{z}}}^{2}}{{v}^{2}}}&{\frac {
\left( \gamma-1 \right) v_{{y}}v_{{x}}}{{v}^{2}}}&{\frac {v_{{x}}v_{{
z}} \left( \gamma-1 \right) }{{v}^{2}}}\\ v_{{y}}{
\gamma}^{2}&{\frac { \left( \gamma-1 \right) v_{{y}}v_{{x}}}{{v}^{2}}}
&{\frac {{v_{{x}}}^{2}+{v_{{y}}}^{2}\gamma+{v_{{z}}}^{2}}{{v}^{2}}}&{
\frac {v_{{y}}v_{{z}} \left( \gamma-1 \right) }{{v}^{2}}}
\\ v_{{z}}{\gamma}^{2}&{\frac {v_{{x}}v_{{z}}
\left( \gamma-1 \right) }{{v}^{2}}}&{\frac {v_{{y}}v_{{z}} \left(
\gamma-1 \right) }{{v}^{2}}}&{\frac {{v_{{z}}}^{2}\gamma+{v_{{x}}}^{2}
+{v_{{y}}}^{2}}{{v}^{2}}}\end {array} \right]
=\begin{bmatrix}
\gamma & \gamma\,\vec{v} \\
\gamma\,\vec{v} & I_3+\frac{\gamma-1}{v^2}\vec{v}\,\vec{v}^T \\
\end{bmatrix}$$
and the inverse Lorentz transformation is :
$$L_D^{-1}=L_D(\vec{v}\mapsto -\vec{v})=\begin{bmatrix}
\gamma & -\gamma\,\vec{v} \\
-\gamma\,\vec{v} & I_3+\frac{\gamma-1}{v^2}\vec{v}\,\vec{v}^T \\
\end{bmatrix}$$
where $I_3$ is a $3\times 3$ unity matrix.
edit
What does "Rotate back." actually mean?
example:
the components of angular momentum vector in inertial system are:
$$\left(\vec{L}\right)_I=\left[_B^I\,S\right]\,
\left(I\right)_B\,
\left(\vec{\omega}\right)_B\tag 1$$
where B is the Body-Frame index and I is the Inertial-Frame index . $\left[_B^I\,S\right]$ is the transformation matrix between Body-Frame and Inertial-Frame. $\left(I\right)_B$ is the $3\times 3$ inertial tensor in Body-Frame.
now if the angular vector components are given in Inertial-Frame thus:
$$\left(\vec{\omega}\right)_B=\left[_I^B\,S\right]
\left(\vec{\omega}\right)_I$$
and equation (1) :
$$\left(\vec{L}\right)_I=\left[_B^I\,S\right]\,\left(I\right)_B\,
\left[_I^B\,S\right]
\left(\vec{\omega}\right)_I=S\,\left(I\right)_B\,S^T\,\left(\vec{\omega}\right)_I$$
The "components" of the inertia tensor are transformed by $$\left(I\right)_I=S\,\left(I\right)_B\,S^T$$
the same is true for each matrix transformation like Lorentz matrix.