In classical field theory (for a single field $\psi$) the dynamical variables are defined to be functions of the fields $\psi$, $\pi$, $\partial_{x_{i}}\psi$ and maybe $\mathbf{r}$, where $\pi$ is the conjugated field to $\psi$.
For $F=\int\mathcal{F}\,d\mathbf{r}$ and $G=\int\mathcal{G}\,d\mathbf{r}$, where F and G are dynamical variables, the functional Poisson bracket can be defined according to (José and Saletan, “Classical Dynamics: A Contemporary Approach”, cap 9))
$$\left\{ F,G\right\} ^{f}=\intop\left(\frac{\delta F}{\delta\psi}\frac{\delta G}{\delta\pi}-\frac{\delta F}{\delta\pi}\frac{\delta G}{\delta\psi}\right)d\mathbf{x},$$ where the derivatives are functional derivatives. The fields themselves have the canonical property
$$\left\{ \psi(\mathbf{y}),\pi(\mathbf{z})\right\} =\delta(\mathbf{y}-\mathbf{z}),$$ $$\left\{ \pi(\mathbf{y}),\pi(\mathbf{z})\right\} =\left\{ \psi(\mathbf{y}),\psi(\mathbf{z})\right\} =0.$$
So far so good, but I'm not sure how to handle the functional derivatives. I'm interested, for example, in the following bracket
$$\left\{ F(\mathbf{x}),\pi(\mathbf{z})\right\} ^{f}$$ $(F(\mathbf{x})\equiv F(\psi(\mathbf{x}),\pi(\mathbf{x}),\partial_{x_{i}}\psi(\mathbf{x}))$
Using $\frac{\delta\pi(\mathbf{z})}{\delta\psi}=0$ and $\frac{\delta\pi(\mathbf{z})}{\delta\pi}=\delta(\mathbf{y}-\mathbf{x})$, I think the answer is
$$\left\{ F(\mathbf{x}),\pi(\mathbf{z})\right\} ^{f}=\frac{\delta F(\mathbf{z})}{\delta\psi}.$$
Is this result correct?