Use the individual contributions of each force, to sum up the combined moment.
$$ \begin{aligned}
\vec{F}_{R} & = \sum_i \vec{F}_i \\
\vec{M}_{R_O} & = \sum_i \vec{r}_i \times \vec{F}_i
\end{aligned} \tag{1}$$
Now you can where the resultant force's line of action is in 3D.
$$ \vec{r}_{R_O} = \frac{ \vec{F}_{R} \times \vec{M}_{R_O} }{ \| \vec{F}_{R} \|^2} \tag{2}$$
Now you can write
$$ \vec{M}_{R_O} = \vec{r}_{R_O} \times \vec{F}_{R} $$
Well almost, because there is also a component of the moment parallel to the net force. That component is found with
$$ \vec{M}_{{R_O}_\parallel} = \underbrace{ \left( \frac{ \vec{F}_{R} \cdot \vec{M}_{R_O} }{ \| \vec{F}_{R} \|^2} \right)}_{\text{pitch }h_R} \vec{F}_{R} \tag{3}$$
So the decomposition of moments is
$$ \boxed{ \vec{M}_{R_O} = \vec{r}_{R_O} \times \vec{F}_{R} + h_R\, \vec{F}_{R} } \tag{4}$$
with $\vec{r}_{R_O}$ as defined in (2) and $h_R$ as defined in (3).
Proof using the vector triple product identity $a\times(b\times c) = b(a\cdot c) - c (a \cdot b)$
$$\begin{aligned}
\vec{M}_{R_O} & = \vec{r}_{R_O} \times \vec{F}_{R} + h_R\, \vec{F}_{R} \\
& = \frac{ \vec{F}_{R} \times \vec{M}_{R_O} }{ \| \vec{F}_{R} \|^2} \times \vec{F}_{R} + \frac{ \vec{F}_{R} \cdot \vec{M}_{R_O} }{ \| \vec{F}_{R} \|^2} \vec{F}_{R} \\
& = \frac{-\vec{F}_{R} \times (\vec{F}_{R} \times \vec{M}_{R_O} ) + \vec{F}_{R} (\vec{F}_{R} \cdot \vec{M}_{R_O} ) }{\| \vec{F}_{R} \|^2} \\
& = \frac{-\vec{F}_{R} (\vec{F}_{R} \cdot \vec{M}_{R_O}) + \vec{M}_{R_O} (\vec{F}_{R} \cdot \vec{F}_{R} ) + \vec{F}_{R} (\vec{F}_{R} \cdot \vec{M}_{R_O} )}{\| \vec{F}_{R} \|^2} \\
& = \frac{\vec{M}_{R_O} \| \vec{F}_{R} \|^2} {\| \vec{F}_{R} \|^2} = \vec{M}_{R_O} \;\; \checkmark
\end{aligned}$$