Hint :
This is not precisely an answer but a suggestion to see the answer from a different point of view : that of the Pauli matrices.
So, as @mike stone pointed out in his answer, the representation of your Hamiltonian $\mathrm H$ with respect to the orthonormal basis $\left(\psi_{1},\psi_{2}\right)$ is
\begin{equation}
\mathrm H\boldsymbol{=}\alpha
\begin{bmatrix}
0 & \!\!\hphantom{\boldsymbol{-}}1 \vphantom{\tfrac{a}{b}}\\
1 & \!\!\hphantom{\boldsymbol{-}}0\vphantom{\tfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}\alpha\,\sigma_1
\tag{01}\label{01}
\end{equation}
where $\sigma_1$ is one of the Pauli matrices
\begin{equation}
\sigma_1=
\begin{bmatrix}
0 & \!\!\hphantom{\boldsymbol{-}}1 \vphantom{\tfrac{a}{b}}\\
1 & \!\!\hphantom{\boldsymbol{-}}0\vphantom{\tfrac{a}{b}}
\end{bmatrix}
\quad , \:\:\:
\sigma_2=
\begin{bmatrix}
0 & \!\!\boldsymbol{-} i \vphantom{\tfrac{a}{b}}\\
i & \!\!\hphantom{\boldsymbol{-}} 0\vphantom{\tfrac{a}{b}}
\end{bmatrix}
\quad , \:\:\:
\sigma_3=
\begin{bmatrix}
1 & \!\!\hphantom{\boldsymbol{-}} 0 \vphantom{\frac{a}{b}}\\
0 & \!\!\boldsymbol{-} 1\vphantom{\frac{a}{b}}
\end{bmatrix}
\tag{02}\label{02}
\end{equation}
The eigenstates and eigenvalues problem is equivalent to the diagonalization of $\mathrm H$. The latter one is in turn equivalent to find a similarity transformation usually through a special unitary matrix $U\in$ SU(2) so that
\begin{equation}
U\mathrm H U^{\boldsymbol{*}}\boldsymbol{=}\mathrm {H_{d}}\,, \qquad \mathrm {H_{d}}\boldsymbol{=}\texttt{diagonal}
\tag{03}\label{03}
\end{equation}
But since the hermiticity and $^{\prime\prime}$tracelessness$^{\prime\prime}$ of
$\mathrm H$ are invariant properties under similarity, so the diagonal matrix $\mathrm {H_{d}}$ must be hermitian and traceless. The only candidate for this is the Pauli matrix $\sigma_3$, that is
\begin{equation}
\mathrm {H_{d}}\boldsymbol{=}\alpha\,\sigma_3\boldsymbol{=}\alpha
\begin{bmatrix}
1 & \!\!\hphantom{\boldsymbol{-}} 0 \vphantom{\frac{a}{b}}\\
0 & \!\!\boldsymbol{-} 1\vphantom{\frac{a}{b}}
\end{bmatrix}
\tag{04}\label{04}
\end{equation}
This means that the matrix $U\in$ SU(2) must satisfy the equation
\begin{equation}
U\mathrm \sigma_1 U^{\boldsymbol{*}}\boldsymbol{=}\sigma_3
\tag{05}\label{05}
\end{equation}
In a 3-dimensional space $\mathbb{R}^3$ (not the real space) with real coordinates $\left(x_1,x_2,x_3\right)$ the matrix $U$ is a SU(2) representation of a rotation around the unit vector $\mathbf n$ of $x_2-$axis through an angle $\theta$ given by
\begin{align}
\mathbf{n}&\boldsymbol{=}\left(0,1,0\right)
\tag{06a}\label{06a}\\
\theta &\boldsymbol{=}\boldsymbol{-}\dfrac{\pi}{2}
\tag{06b}\label{06b}
\end{align}
so
\begin{equation}
U\boldsymbol{=} \cos\left(\frac{\theta}{2}\right)\boldsymbol{-}i(\mathbf{n} \boldsymbol{\cdot} \boldsymbol{\sigma})\sin\left(\frac{\theta}{2}\right)\boldsymbol{=}\tfrac{\sqrt{2}}{2}\left(I\boldsymbol{+}i\,\sigma_2\vphantom{\frac{\theta}{2}}\right)\boldsymbol{=}\tfrac{\sqrt{2}}{2}
\begin{bmatrix}
\hphantom{\boldsymbol{-}}1 & \!\!\hphantom{\boldsymbol{-}}1\:\: \vphantom{\tfrac{a}{b}}\\
\boldsymbol{-}1 & \!\!\hphantom{\boldsymbol{-}}1\:\:\vphantom{\tfrac{a}{b}}
\end{bmatrix}
\tag{07}\label{07}
\end{equation}
$\boldsymbol{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}$
Reference 1 : Rotation which diagonalizes the Hamiltonian.
Reference 2 : How does the Hamiltonian changes after rotating the coordinate frame.
Reference 3 : Understanding the Bloch sphere.
$\boldsymbol{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}$