After assuming a wavefunction of a form:
$$ \psi \approx A \exp{\left(i \frac{S(x)}{\hbar}\right)}$$
and letting
$$S = \hbar^0 S_0 + \hbar^1 S_1 + \hbar^2 S_2 +...$$
The odd-indexed terms of the action for a one-dimensional potential in the time-independent Schrodinger equation do not require integration if $p$ is known and differentiable. However the even-terms require non-trivial integration(which is extensively more computationally taxing). p is defined by:
$$ p = \sqrt{2 m ( E - V(x))} $$
The terms:
$$ S_0^\prime = p$$ $$ \boxed{S_0 = \int dx\, p =\pm \int dx \sqrt{2m(E-V(x))} } $$ $$ S_1^\prime = \frac{i}{2}\frac{1}{p}\frac{d p}{d x} $$ $$ \boxed{S_1 = \frac{i}{2} ln(p) } $$ $$ S_2^\prime = \frac{1}{8 p^3} \left(\frac{d p}{d x} \right)^2 - \frac{1}{4} \left(\frac{1}{p^2} \frac{d^2 p}{d x^2} - \frac{1}{p^3} \left(\frac{d p}{d x}\right)^2\right)$$ $$ \boxed{S_2 = \int dx \left(\frac{1}{4 p^2} \frac{d^2 p}{d x^2} + \frac{3}{8 p^3} \left( \frac{d p}{d x}\right)^2 \right)}\mathrm{\,requires\,\,integration} $$ Now for $S_3$: $$ S_3^\prime = -\frac{i}{8 p^3} \frac{d^3 p}{d x^3} + \frac{3}{4} \left( \frac{i}{p^4} \frac{d p}{d x} \frac{d^2 p}{d x^2} - \frac{1}{p^5} \left( \frac{d p}{d x}\right)^3 \right)$$ After making an educated guess that: $$ \frac{d}{dx} \left( -\frac{i}{8 p^3} \frac{d^2 p}{d x^2} + \frac{3 i}{16 p^4} \left(\frac{d p}{d x}\right)^2\right) = -\frac{i}{8 p^3} \frac{d^3 p}{d x^3} + \frac{3}{4} \left( \frac{i}{p^4} \frac{d p}{d x} \frac{d^2 p}{d x^2} - \frac{1}{p^5} \left( \frac{d p}{d x}\right)^3 \right)$$ Then $$\int dx S_3^\prime = \int dx \frac{d}{dx} \left( -\frac{i}{8 p^3} \frac{d^2 p}{d x^2} + \frac{3 i}{16 p^4} \left(\frac{d p}{d x}\right)^2\right)$$ Clearly because of my guess $$\boxed{S_3 = -\frac{i}{8 p^3} \frac{d^2 p}{d x^2} + \frac{3 i}{16 p^4} \left(\frac{d p}{d x}\right)^2} $$ How do we know that $S_2$ cannot be retrieved the same way? Surely I cannot try an ansatz for every possible function that could be a candidate for $S_2$. This problem has come up in general for different types of problems outside the scope of quantum mechanics. Is it only a consequence of this equation(1-D time-independent Schrodinger equation) that we have odd-indexed and even-indexed terms this way? Would it be different for 3-D?