The advection-diffusion equation is given by $$\partial_{t}\rho=-\nabla\cdot\left(\rho\mathbf{v}_{drift}\right)+\nabla\cdot\left(D\nabla\rho\right)\equiv-\nabla\cdot\left(\rho\mathbf{v}_{current}\right).$$ Does this drift velocity $\mathbf{v}_{drift}$ satisfy a Newtonian equation of motion $$m\frac{d}{dt}\mathbf{v}_{drift}=\mathbf{F},$$ where $\mathbf{F}$ is all external, non-diffusion forces?
If so, then should the total time derivative in this equation be expanded using chain rule so that $$\frac{d}{dt}\mathbf{v}_{drift}=\partial_{t}\mathbf{v}_{drift}+\mathbf{v}_{drift}\cdot\nabla\mathbf{v}_{drift}$$ or $$\frac{d}{dt}\mathbf{v}_{drift}=\partial_{t}\mathbf{v}_{drift}+\mathbf{v}_{current}\cdot\nabla\mathbf{v}_{drift}?$$ Which one is correct if either?