I have some trouble understanding a particular expansion in my QFT lecture. Consider a complex scalar field $\phi$, with the Lagrangian $$\mathcal{L} = \partial_\mu\phi^*\partial^\mu\phi-m^2\phi^*\phi.$$ We now consider a local $U(1)$ transformation of said field, i.e. $$\phi(x)\longmapsto e^{i\alpha(x)}\phi(x) \approx \phi(x)+i\alpha(x)\phi(x).$$ Now consider: $$ \begin{align*} \int\mathcal{D}\phi\,\phi(x_1)\phi^*(x_2)e^{iS[\phi]} &= \int\mathcal{D}\phi^\prime\,\phi^\prime(x_1)\phi^{*\prime}(x_2)e^{iS[\phi^\prime]}\\ &\overset{(1)}{=}\int\mathcal{D}\phi\,\phi^\prime(x_1)\phi^{*\prime}(x_2)e^{iS[\phi^\prime]}\\ &\overset{(2)}{=} \int\mathcal{D}\phi\,\phi(x_1)\phi^{*}(x_2)e^{iS[\phi]}\\ &+ \int \mathcal{D} \phi\Bigg[i \alpha(x_{1}) \phi(x_{1}) \phi^{*}(x_{2})-i \alpha(x_{2}) \phi(x_{1}) \phi^{*}(x_{2})\\ &+\phi(x_{1}) \phi^{*}(x_{2}) \int d^x x \frac{i \delta S}{\delta \alpha} \alpha(x)\Bigg] e^{i S[\phi]}. \end{align*} $$
Questions
- For (1), why is $\mathcal{D}\phi^\prime=\mathcal{D}\phi$. I have a hard time seeing why this transformation should leave the "measure" invariant. What exactly are the restrictions for the measure to be invariant?
- For (2), direct computation shows that $$\phi^\prime(x_1)\phi^{*\prime}(x_2) \approx \phi(x_1)\phi^{*}(x_2) + i \alpha\left(x_{1}\right) \phi\left(x_{1}\right) \phi^{*}\left(x_{2}\right)-i \alpha\left(x_{2}\right) \phi\left(x_{1}\right) \phi^{*}\left(x_{2}\right).$$ But where exactly does the integral in this step come from? I assume it's from $e^{iS[\phi^\prime]}$, but I can't really figure out how exactly...