In the book QFT by Ryder on the topic $\rm SU(2)$ and the rotation group, it is stated that,
The group $\rm SU(2)$ consists of $2\times2$ unitary matrices with unit determinant,
$$UU^\dagger = 1, \qquad \det U=1 \tag{1}\label{1}$$
Let $$U = \begin{bmatrix}a & b\\ c & d\end{bmatrix}; \tag{2}\label{2}$$ applying the unitary condition leads to,
$$U = \begin{bmatrix}a & b\\ -b^* & a^*\end{bmatrix}, \qquad |a|^2+|b|^2=1. \tag{3}\label{3}$$
This is regarded as the transformation matrix in a 2-d complex space with a basic spinor $\xi$ that transforms under $\rm SU(2)$ as,
$$\xi \rightarrow \xi' = U \xi, \quad \xi^\dagger \rightarrow \xi'^\dagger = \xi^\dagger U^\dagger, \qquad \xi = \begin{bmatrix}\xi_1\\ \xi_2\end{bmatrix} .\tag{4}\label{4}$$
It is clear that $$\xi^\dagger\xi = \vert \xi_1\vert^2+\vert \xi_2\vert^2 \tag{5}\label{5}$$ is invariant under \eqref{4}. The outer product is, $$\xi\xi^\dagger = \begin{bmatrix}\vert \xi_1\vert^2 & \xi_1\xi_2^*\\ \xi_1^*\xi_2 & \vert \xi_2\vert^2\end{bmatrix} \rightarrow U\xi\xi^\dagger U^\dagger, \tag{6}\label{6}$$ where $\xi\xi^\dagger$ is a Hermitian matrix.
We see that $\xi$ and $\xi^\dagger$ transform in different ways, but we may use the unitarity of $U$ to show that $$\begin{bmatrix}\xi_1\\ \xi_2\end{bmatrix}, \qquad \begin{bmatrix}-\xi_2^*\\ \xi_1^*\end{bmatrix}$$ transform in the same way under $\rm SU(2)$: Comparing \eqref{3} and \eqref{4}, $$\begin{align} \xi'_1 & = a \xi_1 + b \xi_2 \\ \xi'_2 & = -b^* \xi_1 + a^* \xi_2 , \end{align} \tag{7}\label{7}$$ hence $$\begin{align} -\xi'^*_2 & = a (-\xi^*_2) + b \xi^*_1 \\ \xi'^*_1 & = -b^* (-\xi^*_2) + a^* \xi^*_1 . \end{align} \tag{8}\label{8}$$
Now, $$\begin{bmatrix}-\xi^*_2\\ \xi_1^*\end{bmatrix} = \begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix} \begin{bmatrix}\xi^*_1\\ \xi_2^*\end{bmatrix} = \zeta \xi^*, \qquad \qquad \zeta = \begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix} \tag{9}\label{9}$$
so we have shown that $\xi$ and $\zeta \xi^*$ transform in the same way under $\rm SU(2)$. In symbols $\sim$ means transforms like $$\xi \sim \zeta \xi^* .\tag{10}\label{10}$$
Thus, $$\xi^\dagger \sim (\zeta \xi)^T = (-\xi_2, \xi_1) .\tag{11}\label{11}$$
$$\xi \xi^\dagger \sim \begin{bmatrix}\xi_1\\ \xi_2\end{bmatrix} \begin{bmatrix}-\xi_2, \xi_1\end{bmatrix} = \begin{bmatrix} -\xi_1\xi_2 & \xi_1^2\\ -\xi_2^2 & \xi_1\xi_2\end{bmatrix} \tag{12}\label{12}$$
Call this matrix $-H$, we see from \eqref{6} that under an $\rm SU(2)$ transformation, $$H \rightarrow UHU^\dagger, \tag{13}\label{13}$$ where $H$ is a traceless matrix.
We may now construct from the position vector $\vec{r}$, a traceless Hermitian $2\times2$ matrix transforming under $\rm SU(2)$ like $H$.
$$h = \vec{\sigma} \cdot \vec{r} = \begin{bmatrix}z & x-iy\\ x+iy & -z\end{bmatrix}, \tag{14}\label{14}$$
- What does he mean when he said "but we may use the unitarity of $U$ to show that...transform in the same way under $SU(2)$"? What is the purpose of this construction, i.e. two things that transform in the same way \eqref{8}, \eqref{9}?
- How did he get $\begin{bmatrix}-\xi_2^*\\ \xi_1^*\end{bmatrix}$ and knows that it will transform in the same way with $\begin{bmatrix}\xi_1\\ \xi_2\end{bmatrix}$ under SU(2)?
- I applied \eqref{4} on \eqref{12}, cannot get \eqref{13}.
- All the calculations lead to equation \eqref{12}, what is the point of this? Is it just to show something that is traceless? I don't get the point.
- Just to confirm, in the end he wants to construct a traceless Hermitian $2\times2$ matrix that transforms under $\rm SU(2)$, but I still cannot see the connection of this statement to his constructions/calculations. Can anyone explain more on this?