In spherical coordinates, the resolution of the identity can be written as $$ 1=\int_0^{2\pi}d\phi\int_0^{\pi}\sin\theta\, d\theta\, |\theta,\phi\rangle\langle\theta,\phi| \equiv \int d\Omega |\Omega\rangle\langle \Omega|,$$ where $|\Omega\rangle = |\theta,\phi\rangle$. For spherical harmonics $Y_{lm}(\Omega)$, we then have $$ \delta_{l'l}\delta_{m'm} = \int d\Omega\, Y_{l'm'}^\ast(\Omega)\, Y_{lm}(\Omega).$$ The resolution of the identity in the angular momentum basis is given by $$ 1=\sum_{l=0}^{\infty}\sum_{m=-l}^l |l,m\rangle\langle l,m|,$$ so that $$ \langle \Omega \mid\Omega'\rangle = \sum_{l=0}^{\infty}\sum_{m=-l}^l \langle\Omega\mid l,m\rangle\langle l,m\mid \Omega'\rangle\iff \delta(\Omega-\Omega')=\sum_{l=0}^{\infty}\sum_{m=-l}^l Y_{lm}(\Omega) Y_{lm}(\Omega').$$
Now, the term $\delta(\Omega-\Omega')$ is often rewritten as $\frac1{\sin\theta}\delta(\theta-\theta')\delta(\phi-\phi')$. How does one find this expression?