A good answer is already given by @Pleba, I'm sort of try to give a familiar example.
First In general,
$$\Pi |\psi\rangle =\Pi \int |\omega\rangle \langle \omega |\psi\rangle dx$$
As work out by R. Shankar
$$\langle \omega|\Pi|\psi\rangle =\psi(-\omega)$$
Let $\psi(-\omega)=\pm\psi(\omega)$
Then for some other basis
$$\langle \alpha|\Pi|\psi\rangle =\psi(-\alpha)=\int\langle \alpha|\omega\rangle\langle\omega|\Pi|\psi\rangle d\omega=\int\langle \alpha|\omega\rangle\psi(-\omega) d\omega$$
$$\langle \alpha|\Pi|\psi\rangle=\pm\int \langle \alpha|\omega\rangle\psi(\omega) d\omega \stackrel{?}{=} \pm \phi(\alpha)$$
It depends on the overlap function $ \langle \alpha|\omega\rangle$ what's going to happen.
For example, consider $|\omega\rangle=|x\rangle$ and $|\alpha\rangle=|p\rangle$ with $\langle p|x\rangle \sim e^{-ipx/\hbar}$ which is not an odd or even function. So if $\psi(-x)=\pm \psi(x)$ You can not conclude that $\psi(-p)=\pm \psi(p).$