PMNS matrix is said to be the matrix for the neutrinos as the CKM matrix for the quarks.
See https://en.wikipedia.org/wiki/Pontecorvo–Maki–Nakagawa–Sakata_matrix#The_PMNS_matrix
However, I am confused why this is true.
The PMNS matrix $M_{PMNS}$ is the matrix changing between the neutrino flavor eigenstate and the neutrino mass eigenstate $$ \begin{bmatrix} {\nu_e} \\ {\nu_\mu} \\ {\nu_\tau} \end{bmatrix} = \begin{bmatrix} U_{e 1} & U_{e 2} & U_{e 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix} = M_{PMNS} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix} $$
However, the CKM matrix is obtained from (see p.723 of Peskin QFT) $$ V_{CKM} =U_u^\dagger U_d $$ where $U_u$ is a matrix of $u,c,t$ flavor to flavor matrix. $U_d$ is a matrix of $d,s,b$ flavor to flavor matrix. The $U_u$ and $U_d$ are obtained in an attempt to diagonalizing the Higgs Yukawa term to a diagonalized form as the mass eigenstates. The $ V_{CKM}$ is the weak charge current coupling to the $W$ bosons with flavor changing process.
So $$ V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} $$
Question
So how can $M_{PMNS}$ for neutrinos is an analogy of $V_{CKM}$ for quarks?
I thought the correct analogy for lepton sectors (as $V_{CKM}$ for quarks) would be a matrix of the form like $$ \begin{bmatrix} V_{\nu_e e} & V_{\nu_e \mu} & V_{\nu_e \tau} \\ V_{\nu_{\mu} e} & V_{\nu_{\mu} \mu} & V_{\nu_{\mu} \tau} \\ V_{\nu_{\tau} e} & V_{\nu_{\tau} \mu} & V_{\nu_{\tau} \tau} \end{bmatrix} ? $$ Not the $M_{PMNS}$. True or false?