Reference : My answer here Vector product in a 4-dimensional Minkowski spacetime.
The only thing you need is to prove that $\:M_{jk}\:$ is a $4\times4$ antisymmetric matrix. My suggestion is to see this matrix as the outer (also known as vector or cross) product of real 4-vectors by the analogy of the outer (vector) product of 3-vectors in the Euclidean real space $\mathbb{R}^3$. In the latter this product is essentially a $3\times3$ antisymmetric matrix and as such a kind it has 3 independent elements, that's why we consider it also as a vector in $\mathbb{R}^3$. In the 4-dimensional case the outer product is a $4\times4$ antisymmetric matrix and as such a kind it has 6 independent elements, it's a 6-vector.
(Note : I suggest first to take a look in $\boldsymbol{\S 2,3,4}$ of my answer in the above link)
So consider (the covariant version of) the position 4-vector
\begin{align}
& \mathbf{X} \boldsymbol{=} X_\mu\boldsymbol{=}
\begin{bmatrix}
x_0\vphantom{\dfrac{a}{b}}\\
x_1\vphantom{\dfrac{a}{b}}\\
x_2\vphantom{\dfrac{a}{b}}\\
x_3\vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\boldsymbol{+}x^0\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}x^1\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}x^2\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}x^3\vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\hphantom{\boldsymbol{-}}c\,t \:\vphantom{\dfrac{a}{b}}\\
\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}\mathbf{x}\:\vphantom{\dfrac{a}{b}}\\
\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{A-01a}\label{A-01a}\\
& \text{with transpose}
\nonumber\\
& \mathbf{X}^{\boldsymbol{\top}}\boldsymbol{=}
\begin{bmatrix}
x_0 & x_1 & x_2 & x_3 \vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
x_0 & \hphantom{x_1} & \boldsymbol{-}\mathbf{x}^{\boldsymbol{\top}} & \hphantom{x_3} & \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{A-01b}\label{A-01b}
\end{align}
and also (the covariant version of) the 4-gradient vector operator
\begin{align}
& \boldsymbol{\Box\!\!\!\!\Box\!\!\!\!\Box}\boldsymbol{=}\boldsymbol{\Box}_\nu\boldsymbol{=}
\begin{bmatrix}
\partial/\partial x^0\vphantom{\dfrac{a}{b}}\\
\partial/\partial x^1\vphantom{\dfrac{a}{b}}\\
\partial/\partial x^2\vphantom{\dfrac{a}{b}}\\
\partial/\partial x^3\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\partial_0\vphantom{\dfrac{a}{b}}\\
\partial_1\vphantom{\dfrac{a}{b}}\\
\partial_2\vphantom{\dfrac{a}{b}}\\
\partial_3\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\partial/\partial c\,t\vphantom{\dfrac{a}{b}}\\
\vphantom{\dfrac{a}{b}}\\
\boldsymbol{\nabla}\vphantom{\dfrac{a}{b}}\\
\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{A-02a}\label{A-02a}\\
& \text{with transpose}
\nonumber\\
& \boldsymbol{\Box\!\!\!\!\Box\!\!\!\!\Box}^{\boldsymbol{\top}}\boldsymbol{=}
\begin{bmatrix}
\partial_0 & \partial_1 & \partial_2 & \partial_3 \vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol{=}
\begin{bmatrix}
\partial/\partial c\,t & \hphantom{x_1} & \boldsymbol{\nabla}^{\boldsymbol{\top}} & \hphantom{x_3} & \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{A-02b}\label{A-02b}
\end{align}
For their outer product we have
\begin{align}
\mathbf{W} & \boldsymbol{=}\mathbf{X}\boldsymbol{\times}\boldsymbol{\Box\!\!\!\!\!\Box}\boldsymbol{\equiv}\boldsymbol{\Box\!\!\!\!\!\Box}\,\mathbf{X}^{\boldsymbol{\top}}\boldsymbol{-}\mathbf{X}\,\boldsymbol{\Box\!\!\!\!\!\Box}^{\boldsymbol{\top}}
\nonumber\\
&\boldsymbol{=}
\begin{bmatrix}
\partial_0\vphantom{\dfrac{a}{b}}\\
\partial_1\vphantom{\dfrac{a}{b}}\\
\partial_2\vphantom{\dfrac{a}{b}}\\
\partial_3\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\begin{bmatrix}
x_0 & x_1 & x_2 & x_3 \vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol{-}
\begin{bmatrix}
x_0\vphantom{\dfrac{a}{b}}\\
x_1\vphantom{\dfrac{a}{b}}\\
x_2\vphantom{\dfrac{a}{b}}\\
x_3\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\begin{bmatrix}
\partial_0 & \partial_1 & \partial_2 & \partial_3 \vphantom{\dfrac{a}{b}}
\end{bmatrix}
\nonumber\\
& \boldsymbol{=}
\begin{bmatrix}
\partial_0x_0 & \partial_0x_1 & \partial_0x_2 & \partial_0x_3\vphantom{\dfrac{a}{b}}\\
\partial_1x_0 & \partial_1x_1 & \partial_1x_2 & \partial_1x_3\vphantom{\dfrac{a}{b}}\\
\partial_2x_0 & \partial_2x_1 & \partial_2x_2 & \partial_2x_3\vphantom{\dfrac{a}{b}}\\
\partial_3x_0 & \partial_3x_1 & \partial_3x_2 & \partial_3x_3\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{-}
\begin{bmatrix}
x_0\partial_0 & x_0\partial_1 & x_0\partial_2 & x_0\partial_3\vphantom{\dfrac{a}{b}}\\
x_1\partial_0 & x_1\partial_1 & x_1\partial_2 & x_1\partial_3\vphantom{\dfrac{a}{b}}\\
x_2\partial_0 & x_2\partial_1 & x_2\partial_2 & x_2\partial_3\vphantom{\dfrac{a}{b}}\\
x_3\partial_0 & x_3\partial_1 & x_3\partial_2 & x_3\partial_3\vphantom{\dfrac{a}{b}}\\
\end{bmatrix}
\nonumber\\
& \boldsymbol{=}
\begin{bmatrix}
1\boldsymbol{+}x_0\partial_0 & \partial_0x_1 & \partial_0x_2 & \partial_0x_3\vphantom{\dfrac{a}{b}}\\
\partial_1x_0 & 1\boldsymbol{+}x_1\partial_1 & \partial_1x_2 & \partial_1x_3\vphantom{\dfrac{a}{b}}\\
\partial_2x_0 & \partial_2x_1 & 1\boldsymbol{+}x_2\partial_2 & \partial_2x_3\vphantom{\dfrac{a}{b}}\\
\partial_3x_0 & \partial_3x_1 & \partial_3x_2 & 1\boldsymbol{+}x_3\partial_3\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol{-}
\begin{bmatrix}
x_0\partial_0 & x_0\partial_1 & x_0\partial_2 & x_0\partial_3\vphantom{\dfrac{a}{b}}\\
x_1\partial_0 & x_1\partial_1 & x_1\partial_2 & x_1\partial_3\vphantom{\dfrac{a}{b}}\\
x_2\partial_0 & x_2\partial_1 & x_2\partial_2 & x_2\partial_3\vphantom{\dfrac{a}{b}}\\
x_3\partial_0 & x_3\partial_1 & x_3\partial_2 & x_3\partial_3\vphantom{\dfrac{a}{b}}\\
\end{bmatrix}
\nonumber\\
& \boldsymbol{=}\mathbf{I}_{4\times 4}\boldsymbol{-}\mathbf{M}
\tag{A-03}\label{A-03}
\end{align}
where $\mathbf{I}_{4\times 4}$ the identity matrix and $\mathbf{M}$ the $4\times4$ antisymmetric matrix of the question
\begin{align}
\mathbf{M} & \boldsymbol{=}
\begin{bmatrix}
\hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}\left(x_0\partial_1\boldsymbol{-}x_1\partial_0\right) & \hphantom{\boldsymbol{-}}\left(x_0\partial_2\boldsymbol{-}x_2\partial_0\right) & \hphantom{\boldsymbol{-}} \left(x_0\partial_3\boldsymbol{-}x_3\partial_0\right)\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}\left(x_0\partial_1\boldsymbol{-}x_1\partial_0\right) & \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}\left(x_2\partial_1\boldsymbol{-}x_1\partial_2\right) & \hphantom{\boldsymbol{-}} \left(x_1\partial_3\boldsymbol{-}x_3\partial_1\right)\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}\left(x_0\partial_2\boldsymbol{-}x_2\partial_0\right) & \hphantom{\boldsymbol{-}}\left(x_2\partial_1\boldsymbol{-}x_1\partial_2\right) & \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}\left(x_3\partial_2\boldsymbol{-}x_2\partial_3\right) \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}\left(x_0\partial_3\boldsymbol{-}x_3\partial_0\right) & \boldsymbol{-} \left(x_1\partial_3\boldsymbol{-}x_3\partial_1\right) & \hphantom{\boldsymbol{-}}\left(x_3\partial_2\boldsymbol{-}x_2\partial_3\right) & \hphantom{\boldsymbol{-}}0\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\nonumber\\
& \boldsymbol{=}
\begin{bmatrix}
\hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}K_1 & \hphantom{\boldsymbol{-}}K_2 & \hphantom{\boldsymbol{-}} K_3\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}K_1 & \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}J_3 & \hphantom{\boldsymbol{-}} J_2\vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}K_2 & \hphantom{\boldsymbol{-}}J_3 & \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}J_1 \vphantom{\dfrac{a}{b}}\\
\boldsymbol{-}K_3 & \boldsymbol{-} J_2 & \hphantom{\boldsymbol{-}}J_1 & \hphantom{\boldsymbol{-}}0\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{A-04}\label{A-04}
\end{align}
Note that the scalar operators $L_k \boldsymbol{=} \boldsymbol{-}i\hbar J_k\,,k=1,2,3$ are the components of the orbital angular momentum which are hermitian, that's why the scalar operators $ J_k\,,k=1,2,3$ are antihermitian.