As an atmospheric physics major I am familiar with electromagnetic radiation in the atmosphere and what dictates what wavelength objects will emit at. When observing radiation in the atmosphere it is always thought of as a wave, whether it be longwave or shortwave. Recently though I have been introduced to the quantum world and I am having trouble translating between the wave model and the particle model of light.
I understand that the sun, that has a temp of 6000k, has its peak emission in the visible spectrum. When that light makes it to Earth, and hits an object, that light will be absorbed and what is not absorbed will be reflected back and we will see that color. I am having trouble understanding how this works when thinking of photons. How do we see colors of an object when thinking about photons?
Recently I watched video on why glass is transparent. It said that the electrons in glass were arranged in such a way that when they encountered photons there was not enough energy for them to reach a higher energy level. This made me think of why absorbing that photon and reaching a higher energy level is necessary to not being transparent. It made it seem like that in order to not be transparent photons had to be absorbed so electrons could emit a photon of that color.
When thinking about photons, do we see colors because photons are being reflected back like a wave does? Or do we see electrons emitting a certain color of photon as it lowers energy levels? For instance, I have a green wall with a window. Are photons passing right through the glass but hitting my wall, exciting the electrons up a level then as they go to a lower level a green photon is emitted or do the photons hit my wall and jsut bounce back?
This is still talking about photons hitting the wall? So essentially it is the same as thinking about light as a wave. I understand that when light hits a surface the color we see is the reflected color but I was assuming this was just for the wave model. The color we see can be thought of as reflected photons?
– user2113499 Apr 10 '13 at 20:08