Let $(P, \pi, M)$ be a principal $G$ -bundle. Given $A \in L(G),$ we define the vector field $X^{A} \in \Gamma(T P)$ by $$ \begin{aligned} X_{p}^{A}: \mathcal{C}^{\infty}(P) & \stackrel{\sim}{\longrightarrow} \mathbb{R} \\ f & \mapsto[f(p\cdot\exp (t A))]^{\prime}(0), \end{aligned} $$ where the derivative is to be taken with respect to $t$. Here $\Gamma$ is the set of section in the tangent bundle $TP$ of $(P, \pi, M)$ and $L(G)$ is the lie algebra of the group $G$.
We also define connection one-form on the principal bundle $(P, \pi, M)$ as a smooth Lie-algebra valued one-form, i.e. a smooth map $$ \omega: \Gamma(T P) \stackrel{\sim}{\rightarrow} T_{e} G $$ such that
i) $\omega\left(X^{A}\right)=A$;
ii) $\left((\triangleleft g)^{*} \omega\right)(X)=\left(\operatorname{Ad}_{g^{-1}}\right)_{*}(\omega(X))$.
Let $\sigma : U\subset M\to \pi^{-1}(U)$ be a section in $(P, \pi, M)$ the Yang–Mills field is defined as $$ \sigma^*\omega:=A(x)=\sum_{\mu=1}^{m} \sum_{a=1}^{\operatorname{dim} G} A_{\mu}^{a}(x) E_{a}\left(d x^{\mu}\right)_{x}, $$ where $\left\{E_{1}, E_{2}, \ldots, E_{\operatorname{dim} G}\right\}$ is a basis set for $L(G)$. If $\sigma_2=g(x)\sigma$ is another section and $G$ is a matrix group then we have $$\sigma^*\omega_2:=A_2(x)=g(x)^{-1} A_{\mu}(x) g(x)+g(x)^{-1} \partial_{\mu}g(x). \tag 1$$
Let $LM$ be a frame bundle. Any chart $(U,x)$ of a smooth manifold $M$ induces a local section $\sigma: U\to LM$ of the frame bundle of $M$ by $$ \sigma(m):=\bigg(\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^m} \bigg)\in L_mM \tag2 $$ we define $\Gamma:= \sigma^* \omega.$ and if $(U',x')$ is another chart with $U \cap U' \neq \emptyset$ and that $$ \sigma_2(m):=\bigg(\frac{\partial}{\partial x'^1},\ldots,\frac{\partial}{\partial x'^m} \bigg)\in L_mM \tag3 $$ One can show by $(1)$ that $$\Gamma_{\mu \delta}^{\prime}{ }^{\epsilon}(x)=\sum_{\alpha, \rho=1}^{m} \frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\rho}}{\partial x^{\prime \delta}} \frac{\partial x^{\prime \epsilon}}{\partial x^{\chi}} \Gamma_{\alpha \rho}^{\chi}(x)+\sum_{\lambda=1}^{m} \frac{\partial x^{\prime \epsilon}}{\partial x^{\lambda}} \frac{\partial^{2} x^{\lambda}}{\partial x^{\prime \mu} \partial x^{\prime \delta}}.\tag 4$$
As we see expression $(4)$ does not come from a coordinate transformation but from a change of section $\sigma \rightarrow \sigma_2$.
Now for charts $(U,x)$ and $(U,x')$ if one makes a coordinate transformation we would have $$\sigma(x) \rightarrow \sigma'(x')=\bigg(\frac{\partial x'^{\nu}}{\partial x^{1}}\frac{\partial}{\partial x'^{\nu}},\ldots,\frac{\partial x'^{\mu}}{\partial x^{m}}\frac{\partial}{\partial x'^{\mu}} \bigg)= \bigg(\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^m} \bigg)=\sigma(x) \tag 5 $$ and so
$\Gamma(x)=\Gamma'(x')$ and since only the indices $\mu$ depends on the coordinates we should have
$$\Gamma_{\mu \delta}^{\prime}{ }^{\epsilon}=\frac{\partial x'^{\nu}}{\partial x^{\mu}}\Gamma_{\nu \delta}{ }^{\epsilon}.$$
Am I wrong?