Consider $L= x^2 + y^2 = \text{C} \to \delta L=\frac{\partial L}{\partial x}dx + \frac{\partial L}{\partial y} dy=0\to\frac{dx}{dy}=\frac{-y}{x} \\ \to x=\cos(\theta) \text{ & } dx=-\sin(\theta)d\theta \text{ and } y=\sin(\theta) \text{ & } dy=\cos(\theta)d\theta.$
$L$ is constant but it's possible to find equations for $x$ and $y$ by varying $L$.
$L=g_{ab}\dot{x}^a\dot{x}^b =\text{C}$ only says, in this context, that the tangent vector has constant magnitude. The paths $x(s)$ and the space $g_{ab}$ are variable. Again, you can find how L behaves by differentiating it.
If $2K\equiv g_{ab}\dot{x}^a\dot{x}^b =\dot{x}^a\dot{x}_a $ then you can quickly read off $\Gamma^a _{bc}$ from the geodesic equation in the form
$\frac{\partial K}{\partial x^a } - \frac{d}{ds} (\frac{\partial K}{\partial \dot{x}^a})=0$ where $2K=\text{C}=0,+1,-1$.
Example:
$ds^2 = \eta^2 d\tau^2 - d\eta^2 \to K=\frac{1}{2}(\eta^2 \dot\tau^2 - \dot{\eta}^2 ) $
$\frac{\partial K}{\partial x^a } - \frac{d}{ds} (\frac{\partial K}{\partial \dot{x}^a})=0 \to \frac{\partial K}{\partial \tau } - \frac{d}{ds} (\frac{\partial K}{\partial \dot{\tau}})=0\to2\eta \dot{\eta}\dot{\tau}+\eta^2 \ddot{\tau}=0\to$
$\ddot{\tau}+\frac{2}{\eta} \dot{\eta} \dot{\tau}=0\implies\Gamma^\tau _{\eta \tau}=\frac{2}{\eta}=\Gamma^\tau _{\tau\eta}$