
In above Figure-01 an inertial system $\:\mathrm S'\:$ is translated with respect to the inertial system $\:\mathrm S\:$ with constant velocity
\begin{align}
\boldsymbol{\upsilon} & \boldsymbol{=}\left(\upsilon_{1},\upsilon_{2},\upsilon_{3}\right)
\tag{02a}\label{02a}\\
\upsilon & \boldsymbol{=}\Vert \boldsymbol{\upsilon} \Vert \boldsymbol{=} \sqrt{ \upsilon^2_{1}\boldsymbol{+}\upsilon^2_{2}\boldsymbol{+}\upsilon^2_{3}}\:\in \left(0,c\right)
\tag{02b}\label{02b}
\end{align}
The Lorentz transformation is
\begin{align}
\mathbf{x}^{\boldsymbol{\prime}} & \boldsymbol{=} \mathbf{x}\boldsymbol{+} \dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathbf{x}\right)\boldsymbol{\upsilon}\boldsymbol{-}\dfrac{\gamma\boldsymbol{\upsilon}}{c}c\,t
\tag{03a}\label{03a}\\
c\,t^{\boldsymbol{\prime}} & \boldsymbol{=} \gamma\left(c\,t\boldsymbol{-} \dfrac{\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathbf{x}}{c}\right)
\tag{03b}\label{03b}\\
\gamma & \boldsymbol{=} \left(1\boldsymbol{-}\dfrac{\upsilon^2}{c^2}\right)^{\boldsymbol{-}\frac12}
\tag{03c}\label{03c}
\end{align}
For the Lorentz transformation \eqref{03a}-\eqref{03b}, the vectors $\:\mathbf{E}\:$ and $\:\mathbf{B}\:$ of the electromagnetic field are transformed as follows
\begin{align}
\mathbf{E}' & \boldsymbol{=}\gamma \mathbf{E}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{E}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\,\boldsymbol{+}\,\gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\right)
\tag{04a}\label{04a}\\
\mathbf{B}' & \boldsymbol{=} \gamma \mathbf{B}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{B}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\boldsymbol{-}\!\dfrac{\gamma}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right)
\tag{04b}\label{04b}
\end{align}
Nothing more, nothing less.
How the Lorentz force 3-vector or the Lorentz force 4-vector are transformed see my answer here Are magnetic fields just modified relativistic electric fields?.
Expressions of the kind $''$...scaled down by $\gamma$...$''$ or $''$...the Electric fields are now closer together because of length contraction...$''$ are misplaced.