Equation for an expectation value $\langle x \rangle$ is known to me:
\begin{align} \langle x \rangle = \int\limits_{-\infty}^{\infty} \overline{\psi}x\psi\, d x \end{align}
By the definition we say that expectation value is a sandwich: $\langle \psi|\hat{x}|\psi\rangle$. So:
\begin{align} \langle \psi|\hat{x}|\psi \rangle = \int\limits_{-\infty}^{\infty} \overline{\psi}x\psi\, d x \end{align}
Can you first confirm that these three lines are correct (I am not sure if I understand Dirac's bra-ket notation right). If they are wrong please explain:
\begin{align} \text{1st:}& & \langle \psi | \hat{x} | \psi \rangle &= | \psi\rangle \cdot \hat{x}|\psi \rangle\\ \text{2nd:}& & \langle \psi | \hat{x} | \psi \rangle &= {\langle \psi|}^\dagger \cdot \hat{x}|\psi \rangle\\ \text{3rd:}& & \langle \psi | \hat{x} | \psi \rangle &= {\langle \psi|}^\dagger \cdot \hat{x} \langle\psi |^\dagger\\ \end{align}
How do i derive relations $\langle\psi|\hat{x}|\psi\rangle = \langle \psi |\hat{x}\psi\rangle$ and $\langle\psi|\hat{x}|\psi\rangle = \langle \hat{x}^\dagger\psi |\psi\rangle$?