Both sides of Maxwell's equations are equal to each other, so each of these equations connects quantities simultaneous in time, and as a consequence none of these equations can represent a causal relation:
\begin{align} \mathbf\nabla\cdot\mathbf{E}(\mathbf{r}, t) &= 4\pi\rho(\mathbf{r}, t) \label{Diff I}\\ \mathbf\nabla\times\mathbf{B}(\mathbf{r}, t) &= \dfrac{4\pi}{c} \mathbf{J}(\mathbf{r}, t)+\dfrac{1}{c}\dfrac{\partial\mathbf{E}(\mathbf{r}, t)}{\partial t} \label{Diff IV}\\ \mathbf\nabla\times\mathbf{E}(\mathbf{r}, t) &= -\dfrac{1}{c}\dfrac{\partial\mathbf{B}(\mathbf{r}, t)}{\partial t} \label{Diff III}\\ \mathbf\nabla\cdot\mathbf{B}(\mathbf{r}, t) &= 0 \label{Diff II} \end{align}
But the solutions of this equation (Jefimenko's equations) reflects the "causality", because of right hand sides involve "retarded" time:
\begin{equation} \mathbf{E}(\mathbf{r}, t) = \int \left[\frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^3}\rho(\mathbf{r}', t_r) + \frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^2}\frac{1}{c}\frac{\partial \rho(\mathbf{r}', t_r)}{\partial t} - \frac{1}{|\mathbf{r}-\mathbf{r}'|}\frac{1}{c^2}\frac{\partial \mathbf{J}(\mathbf{r}', t_r)}{\partial t} \right] \mathrm{d}^3 \mathbf{r}', \end{equation}
\begin{equation} \mathbf{B}(\mathbf{r}, t) = -\frac{1}{с} \int \left[\frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^3} \times \mathbf{J}(\mathbf{r}', t_r) + \frac{\mathbf{r}-\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|^2} \times \frac{1}{c}\frac{\partial \mathbf{J}(\mathbf{r}', t_r)}{\partial t} \right] \mathrm{d}^3 \mathbf{r}', \end{equation}
where $\mathbf{r}'$ is a point in the charge distribution, $\mathbf{r}$ is a point in space, and $t_r = t - \frac{|\mathbf{r}-\mathbf{r}'|}{c}$ is the retarded time.
The question can be purely technical, how does the “retardation” arise in the solutions, if it was not in the original equations?