In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates $(q, p, t) \rightarrow (Q, P, t)$ that preserves the form of Hamilton's equations.
Now in quantum mechanics canonical transformation should be replaced by unitary transformation. My question is are all canonical transformations unitary transformations?
To clarify what I mean suppose we we have quantum Hamiltonian $$ {H}=H({q}, {p})=\frac{1}{2}\left({p}^{2}+\omega^{2} {q}^{2}\right) $$ Performing a transformation of coordinates $ T\left(x^{\prime}, p^{\prime}\right)=$ $(x, p)$ where $$ x=\left\{\begin{array}{rl} \sqrt{\left|2 x^{\prime}\right|}, & x^{\prime}>0 \\ -\sqrt{\left|2 x^{\prime}\right|}, & x^{\prime}<0 \end{array}, \quad p=p^{\prime} \sqrt{\left|2 x^{\prime}\right|}\right. \text {, } $$ with the inverse $T^{-1}$ in the form $$ x^{\prime}=\left\{\begin{array}{rl} \frac{1}{2} x^{2}, & x>0 \\ -\frac{1}{2} x^{2}, & x<0 \end{array}, \quad p^{\prime}=|x|^{-1} p\right. $$ the Hamiltonian $H$ transforms to the following function $$ H^{\prime}\left(x^{\prime}, p^{\prime}\right)=H\left(T\left(x^{\prime}, p^{\prime}\right)\right)=\left|x^{\prime}\right| p^{\prime 2}+\omega^{2}\left|x^{\prime}\right| $$ Is $T$ a unitary transformation?