I want to know if my logic in rebasing the pure $|u\rangle$ and $|d\rangle$ to $|+\rangle$ and $|-\rangle$ is correct:
$$|+\rangle=\frac{|u\rangle+|d\rangle}{\sqrt{2}}\implies|u\rangle=\sqrt{2}|+\rangle-|d\rangle\tag1$$
$$|-\rangle=\frac{|u\rangle-|d\rangle}{\sqrt{2}}\implies|d\rangle=\sqrt{2}|-\rangle+|u\rangle\tag2$$
substituting $(2)$ into $(1)$ we get: $$|u\rangle=\frac{\sqrt{2}}{2}(|+\rangle+|-\rangle)$$
substituting $(1)$ into $(2)$ we get: $$|d\rangle=\frac{\sqrt{2}}{2}(|+\rangle-|-\rangle)$$