Let's say we a free particle of mass $m$ with have the Lagrangian
\begin{equation} L_0 = \frac{m}{2} g_{\mu\nu}(x) \frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda} \end{equation}
where $g_{\mu\nu}$ is the metric and $\lambda$ is an arbitrary parameter. The equations of motion are
\begin{equation} m\frac{D}{d\lambda} \frac{dx^\mu}{d\lambda}=0 \end{equation}
where $\frac{D}{d\lambda}=\frac{dx^\nu}{d\lambda}\nabla_\nu$ is the covariant parameter derivative along the worldline. This equation means that $\lambda$ is an affine parameter. so the 4-velocity satisfies the normalization condition
\begin{equation} g_{\mu\nu}(x) \frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda}=c \end{equation}
where $c=-1$ would correspond to $\lambda$ being proper time. Here I'm using a signature $(-1,+1,+1,+1)$ for the metric. My question is: If we now add a perturbation to the particle, so we get a new Lagrangian
\begin{equation} L = \frac{m}{2} g_{\mu\nu}(x) \frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda} - q \Phi(x) \end{equation}
so the equations of motion are
\begin{equation} m\frac{D}{d\lambda} \frac{dx^\mu}{d\lambda}=-q\partial^\mu \Phi \end{equation}
will $\lambda$ still be an affine parameter and the 4-velocity still be normalized to be
\begin{equation} g_{\mu\nu}(x) \frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda}=c \end{equation}