We start from an abstract state vector $ \newcommand{\ket}[1]{|{#1}\rangle} \ket{\Psi}$ as a description of a state of a system and the Schrödinger equation in the following form $$ \DeclareMathOperator{\dif}{d \!} \newcommand{\ramuno}{\mathrm{i}} \newcommand{\exponent}{\mathrm{e}} \newcommand{\bra}[1]{\langle{#1}|} \newcommand{\braket}[2]{\langle{#1}|{#2}\rangle} \newcommand{\bracket}[3]{\langle{#1}|{#2}|{#3}\rangle} \newcommand{\linop}[1]{\hat{#1}} \newcommand{\dpd}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dod}[2]{\frac{\dif{#1}}{\dif{#2}}} \ramuno \hbar \dod{}{t} \ket{\Psi(t)} = \hat{H} \ket{\Psi(t)} \, . \quad (1) $$
Now if we move to position representation of the state vector what will happen to the Schrödinger equation?
In Mathematics for Quantum Mechanics: An Introductory Survey of Operators, Eigenvalues And Linear Vector Spaces by John David Jackson I found the following information (pp. 77-78).
By taking an inner product of both sides of (1) with $\ket{x}$ and using the resolution of identity $\linop{I} = \int\nolimits_{-\infty}^{+\infty} \ket{x'} \bra{x'} \dif{x'}$ on the right side we obtain $$ \ramuno \hbar \dod{}{t} \braket{x}{\Psi(t)} = \int\limits_{-\infty}^{+\infty} \bracket{ x }{ \linop{H} }{ x' } \braket{ x' }{ \Psi(t) } \dif{x'} \, . $$ We then introduce a wave function $\Psi(x,t) \equiv \braket{x}{\Psi(t)}$ and if I understand correctly $\bracket{ x }{ \linop{H} }{ x' }$ is also replaced by a function $h(x, x')$ which will lead us to $$ \ramuno \hbar \dod{}{t} \Psi(x, t) = \int\limits_{-\infty}^{+\infty} h(x, x') \Psi(x', t) \dif{x'} \, . $$ Now we are one step away from the familiar Schrödinger equation in position representation: we need Hamiltonian operator in position representation $\linop{H}(x, \frac{\hbar}{\ramuno} \dod{}{x})$ to be given by $$ \linop{H}(x, \frac{\hbar}{\ramuno} \dod{}{x}) \Psi(x, t) = \int\limits_{-\infty}^{+\infty} h(x, x') \Psi(x', t) \dif{x'} \, . $$
Author claims (p. 44) that
For our purposes the general linear operator $K$ can be written in the explicit form $$ g = K f \rightarrow g(x) = \int\limits_{a}^{b} k(x,x') f(x') \dif{x'} \quad(2) $$ The function $k(x,x')$ is called the kernel of the operator $K$.
It is not that I do not trust the author, but since my knowledge of mathematics is not great and I've never seen something like (2) before, I'm confused with this "for our purposes".
What does it actually mean? Is (2) true for any linear operator or for a particular kind of linear operators, say, for self-adjoint linear operators on Hilbert spaces?