I am trying to derive Lorentz Invariant phase volume,
$$\int \frac{d^3p}{2E} = \int d^4p \delta(p^2-m_0^2) \Theta(p_0)$$
$$\int dp_0 \delta(p^2 -m_0^2) \Theta (p_0) = \int dp_0 \delta(p_0^2-E_p^2)\Theta(p_0) $$ $$=\int \frac{1}{2E}(\delta(p_0-E) + \delta(p_0+E) dp_0 \Theta(p_0)$$ $$=\frac{1}{2E}$$ $$hence \int \frac{d^3p}{2E} = \int d^4p\delta (p^2 -m_0^2)\Theta(p_0)$$
My only doubt is the $$\delta(p^2-m_0^2)$$ is not defined owing to Einstien relation$$(p^2=m^2)$$ so whether this integration is defined...
Please help me...