In special relativity, the equation of motion in Galilean coordinates are:
$$\frac{\text{d}\boldsymbol{p}}{\text{d}t} - \boldsymbol{F} = \frac{\text{d}}{\text{d}t}\left(\frac{m\boldsymbol{v}}{\sqrt{1-v^2/c^2}}\right) - \frac{\partial V_0}{\partial \boldsymbol{x}} = 0$$
These are the Euler-Lagrange equations:
$$\frac{\text{d}}{\text{d}t}\left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{v}}\right) - \frac{\partial \mathcal{L}}{\partial \boldsymbol{x}} = 0$$
for a Lagrangian given by:
$$\mathcal{L} = -mc^2\sqrt{1-\frac{v^2}{c^2}}-V_0$$
In totally general coordinates, we would have:
$$\mathcal{L} = -mc^2\sqrt{-g_{\mu\nu}\frac{\text{d}x^\mu}{\text{d}x^0}\frac{\text{d}x^\mu}{\text{d}x^0}}- V_\alpha \frac{\text{d}x^\alpha}{\text{d}x^0}$$
where the "potential" is now a Lorentz vector potential. The action will be:
$$S_{AB} = -mc \int_A^B \text{d}s - \int_A^B \frac{V_\alpha}{c} \text{d}x^\alpha$$
which is Lorentz invariant and the equations of motion will be:
$$m\left(\frac{1}{c}\frac{\text{d}u^\alpha}{\text{d}\tau} + \Gamma^\alpha_{\mu\nu}u^\mu u^\nu \right) = \frac{1}{c}F^\alpha$$
where $\text{d}\tau = \text{d}s/c$ is proper time (a Lorentz scalar). The energy (timelike-component of the energy-impulse vector) will be:
$$\mathcal{H} = \frac{\partial \mathcal{L}}{\partial \dot{x}^a}\dot{x}^a -\mathcal{L}=
E = \sqrt{m^2c^4 + \|\boldsymbol{p}c-\boldsymbol{V}\|^2} + V_0$$