OP's sought-for identity is
$$\begin{align}e^{-\hat{A}}\frac{d}{d\lambda}e^{\hat{A}} ~=~& \int_0^1\!ds~e^{-s\hat{A}}\frac{d\hat{A}}{d\lambda}e^{s\hat{A}}\cr
~\stackrel{(3)}{=}~& \int_0^1\!ds~e^{-s~{\rm ad}\hat{A}}\frac{d\hat{A}}{d\lambda} \cr
~=~& \int_0^1\!ds\sum_{n=0}^{\infty}\frac{(-s~{\rm ad}\hat{A})^n}{n!}\frac{d\hat{A}}{d\lambda}\cr
~\stackrel{(4)}{=}~& \sum_{n=0}^{\infty}\frac{(-{\rm ad}\hat{A})^n}{(n+1)!}\frac{d\hat{A}}{d\lambda} ,\end{align}\tag{1}$$
where we have defined the adjoint map
$${\rm ad}\hat{A}~\equiv ~[\hat{A},~\cdot~],\tag{2}$$
used the identity
$$ e^\hat{X} \hat{Y} e^{-\hat{X}}~=~e^{{\rm ad}\hat{X}}\hat{Y},\tag{3}$$
and used the integral
$$ \int_0^1\!ds~s^n~=~\frac{1}{n+1}.\tag{4}$$
The first equality in eq. (1) is proven in my Phys.SE answer here.