In the Lagrangian formalism of path integral quantization, one invokes the formula $$\int d\theta\,\delta(f(\theta))=\int df\det\Bigg|\frac{d\theta}{df}\Bigg|\delta(f(\theta))=\det\Bigg|\frac{d\theta}{df}\Bigg|_{f=0}. \tag{$\ast$}$$
Now consider the naive partition function $$\mathcal{Z}=\int\mathcal{D}[A]e^{-S[A]}. \tag{1}$$
The action $S[A]$ and the functional integral measure $\mathcal{D}[A]$ must be gauge invariant under an arbitrary gauge transformation $$A[U]=U^{-1}dU+U^{-1}AU\quad\mathrm{or}\quad\delta_{U}A=d\,\delta U+[A,\delta U], \tag{$\star$}$$
and $\mathcal{D}[A]\equiv\prod_{\mu,a,x}dA^{a}_{\mu}(x)$.
Next, consider a "haar measure" on the (infinite dimensional) Lie group of gauge transformations ($\star$), i.e $$\mathcal{D}[U]=\mathcal{D}[UU^{\prime}];\quad\mathrm{and}\quad\mathcal{D}[U]\equiv\prod_{x}dU(x),$$
and define the Faddeev-Popov determinant via the following functional integral identity $$1=\Delta[A]\int\mathcal{D}[U]\,\delta[\mathcal{F}(A[U])], \tag{2}$$
where $\mathcal{F}(A[U])$ is known as the gauge fixing condition to be specified.
Claim: The Faddeev-Popov determinant $\Delta[A]$ is gauge invariant.
proof: It can be shown as follows $$\Delta[A]^{-1}=\int\mathcal{D}[U]\,\delta[\mathcal{F}(A[U])],\quad\mathrm{hence}\quad\Delta[A[U]]^{-1}=\int\mathcal{D}[U^{\prime}]\,\delta[\mathcal{F}(A[UU^{\prime}])].$$
But since $\mathcal{D}U$ is gauge invariant, one has $$\Delta[A[U]]^{-1}=\int\mathcal{D}[UU^{\prime}]\,\delta[\mathcal{F}(A[UU^{\prime}])]=\Delta[A]^{-1}.$$
Now insert the functional integral identity (2) into the partition function (1), one has
\begin{align}
\mathcal{Z}&=\int\mathcal{D}[A]e^{-S[A]} \\
&=\int\mathcal{D}[A]\Delta[A]\int\mathcal{D}[U]\,\delta[\mathcal{F}(A[U])]e^{-S[A]} \\
&=\int\mathcal{D}[U]\int\mathcal{D}[A]\left(\Delta[A]\delta[\mathcal{F}(A[U])]e^{-S[A]}\right).
\end{align}
Now observe that the integrand $$\int\mathcal{D}[A]\left(\Delta[A]\delta[\mathcal{F}(A[U])]e^{-S[A]}\right)$$
under the integral $\int\mathcal{D}[U]$ is actually independent of $U$, therefore it can be replaced by $$\int\mathcal{D}[A[U]]\left(\Delta[A[U]]\delta[\mathcal{F}(A[U])]e^{-S[A[U]]}\right)=\int\mathcal{D}[A]\left(\Delta[A]\delta[\mathcal{F}(A)]e^{-S[A]}\right).$$
Thus, the partition function can be written as $$\mathcal{Z}=\int\mathcal{D}[U]\int\mathcal{D}[A]\left(\Delta[A]\delta[\mathcal{F}(A)]e^{-S[A]}\right). \tag{3}$$
Next, use the functional version of the formula ($\ast$), one has
\begin{align}
\Delta[A]^{-1}&=\int\mathcal{D}[\mathcal{F}]\mathrm{Det}\Bigg|\frac{\delta U}{\delta\mathcal{F}(A[U])}\Bigg|\delta[\mathcal{F}] \\
&=\int\mathcal{D}[\mathcal{F}]\mathrm{Det}\Bigg|\frac{\delta\mathcal{F}(A[U])}{\delta U}\Bigg|^{-1}\delta[\mathcal{F}] \\
&=\mathrm{Det}\Bigg|\frac{\delta\mathcal{F}(A[U])}{\delta U}\Bigg|^{-1}\Bigg|_{\mathcal{F}(A[U])=0},
\end{align}
i.e $$\Delta[A]=\mathrm{Det}\Bigg|\frac{\delta\mathcal{F}(A[U])}{\delta U}\Bigg|_{\mathcal{F}(A[U])=0}.$$
One can pick a gauge fixing condition $\mathcal{F}(A[U])$ such that $\mathcal{F}(A[U])=0$ at $U=\mathrm{id}$.
Since from the above expression one finds that only infinitesimal gauge transformations are relevant in calculation, one can safely assume $$U(x)=\exp\left\{i\sum_{a}T^{a}\Lambda_{a}(x)\right\}, \tag{4}$$
where $\left\{T_{a}\right\}_{a=1,\cdots,N}$ is a basis of the Lie algebra of the gauge group. Then, the Fadeev-Popov determinant can be chosen such that $$\Delta[A]=\mathrm{Det}\Bigg|\frac{\delta\mathcal{F}(A[U])}{\delta U}\Bigg|_{U=\mathrm{id}}$$
Then, using the functional chain-rule and linearity of determinant, one has
$$\frac{\delta\mathcal{F}(A[U](x))}{\delta U(y)}\Bigg|_{U=\mathrm{id}}=\sum_{a}\int d^{4}z\frac{\delta\mathcal{F}(A[U](x))}{\delta\Lambda_{a}(z)}\Bigg|_{\Lambda=0}\frac{\delta\Lambda_{a}(z)}{\delta U(y)}\Bigg|_{\Lambda=0}.$$
Notice that the factor on the right is the inverse of $$\left(\frac{\delta U(y)}{\delta\Lambda_{a}(z)}\right)\Bigg|_{\Lambda=0}=iT^{a}\delta(y-z),$$
which is a Lie algebra-valued constant. The above equation is an (infinite-dimensional) linear transformation on $$\mathcal{M}\equiv\frac{\delta\mathcal{F}(A[U])}{\delta\Lambda}.$$
Thus, up to some infinite constant, one can replace $\Delta[A]$ by $\mathrm{Det}\mathcal{M}$ in the partition function.
More precisely, one has $$\Delta[A]=\mathrm{Det}\Bigg|\frac{\delta\mathcal{F}(A[U])}{\delta U}\Bigg|_{U=\mathrm{id}}=\mathrm{Det}(\mathcal{M}\cdot^{-1})=\mathrm{Det}\mathcal{M},$$
where
\begin{align}
(\mathcal{M}\cdot^{-1})(x,y)&=\int d^{4}z\frac{\delta\mathcal{F}(A[U](x))}{\delta\Lambda(z)}\Bigg|_{\Lambda=0}\cdot\frac{\delta\Lambda(z)}{\delta U(y)}\Bigg|_{\Lambda=0} \\
&=\int d^{4}z\mathcal{M}(x,z)^{-1}(z,y).
\end{align}
Using the functional chain-rule, one obtains
\begin{align}
\mathcal{M}^{ab}(x,y)&\equiv\int d^{4}z\left(\frac{\delta\mathcal{F}^{a}(A[U](x))}{\delta A[U]^{c}_{\mu}(z)}\frac{\delta A[U]^{c}_{\mu}(z)}{\delta\Lambda_{b}(y)}\right)\Bigg|_{\Lambda=0} \\
&=\int d^{4}z\frac{\delta\mathcal{F}^{a}(A(x))}{\delta A^{c}_{\mu}(z)}\left(\frac{\partial}{\partial z_{\mu}}\delta^{cb}+\sum_{d}f^{cbd}A_{d\mu}(z)\right)\delta(z-y). \tag{5}
\end{align}
Also notice that under the change of variables, $$\mathcal{D}[U]=\mathrm{Det}\left(\frac{\delta U}{\delta\Lambda}\right)\mathcal{D}[\Lambda],$$
the Jacobian factor is an infinite constant (independent of gauge fields $A_{\mu}^{a}(x)$), which can be omitted in the functional integral.
Plugging (5) back into (3), one has $$\mathcal{Z}=\int\mathcal{D}[\Lambda]\int\mathcal{D}[A]\left(\mathrm{Det}\mathcal{M}\cdot\delta[\mathcal{F}(A)]\cdot e^{-S[A]}\right).$$
But the integrand $$\int\mathcal{D}[A]\left(\mathrm{Det}\mathcal{M}\cdot\delta[\mathcal{F}(A)]\cdot e^{-S[A]}\right)$$
under the integral $\int\mathcal{D}[\Lambda]$ is independent of $\Lambda$, thus the integral $\int\mathcal{D}[\Lambda]$ of gauge orbits only produces an infinite constant factor, which can be omitted.
Finally, one obtains the gauge-fixed partition function $$\mathcal{Z}=\int\mathcal{D}[A]\left(\mathrm{Det}\mathcal{M}\cdot\delta[\mathcal{F}(A)]\cdot e^{-S[A]}\right).$$
In your case, one can pick up the Lorenz gauge $$\mathcal{F}(A)=\partial_{\mu}A^{\mu}=0$$
in QED, and the Faddeev-Popov matrix is $$\mathcal{M}(x,y)=\Box\,\delta(x-y)$$
which is a constant.
More generally, in the non-Abelian case, since the $A^{a}_{\mu}(z)$ appears in the Faddeev-Popov determinant, the determinant cannot be factored out in the functional integral, and produces non-trivial interactions between photons and ghost fermions.
The gauge fixing procedure is even clearer in the canonical approach of the path-integral. TO BE CONTINUED