The eigenstates of the harmonic oscillator are
\begin{equation}
\psi_{m}(x) = \frac{1}{\sqrt{\mathcal{N}}} e^{-x^{2}/2l_{B}^{2}}H_{m}(x/l_{B})
\end{equation}
where the magnetic length is defined as $l_{B}^{2} = \frac{m\omega^{2}}{\hbar}$, $H_{m}(z)$ is the $\text{m}^{\text{th}}$ Hermite polynomial and $\mathcal{N}$ is some normalisation constant. The expectation value of $x^{n}$ is therefore
\begin{equation}
\begin{split}
\langle x^{n} \rangle &= \frac{1}{\mathcal{N}}\int^{\infty}_{-\infty}H^{*}_{m}(x/l_{B})e^{-x^{2}/2l_{B}^{2}} x^{n} e^{-x^{2}/2l_{B}^{2}} H_{m}(x/l_{B}) \text{d}x \\
&= \frac{1}{\mathcal{N}}\int^{\infty}_{-\infty} x^{n} e^{-x^{2}/l_{B}^{2}} H^{2}_{m}(x/l_{B}) \text{d}x
\end{split}
\end{equation}
since Hermite polynomials are real-valued functions. For odd $n$ the integrand is odd and the integral will evaluate to zero when taken over a symmetric range.