We know a space-translation generator can be written as:
\begin{equation}
T(\textbf{r}_{0})|\alpha\rangle=e^{-i\frac{\textbf{p}\cdot\textbf{r} _{0}}{\hbar}}|\alpha\rangle=|\alpha'\rangle.
\end{equation}
If the system is space-translation invariant, then
\begin{align}
H|\alpha'\rangle&=i\hbar\partial_{t}|\alpha'\rangle=i\hbar\partial_{t}T|\alpha\rangle=Ti\hbar\partial_{t}|\alpha\rangle=TH|\alpha\rangle=THT^{+} |\alpha'\rangle\\
&\rightarrow THT^{+}=H \rightarrow HT=TH.
\end{align}
If $T^{+}=T^{-1}$ as in this case.
This is the reason why a symmetry needs to have a generator that commutes with the Hamiltonian.
However this makes sense only if the generator itself is indipendente in time, otherwise there should be another term in here: \begin{equation} \partial_{t}T|\alpha\rangle=(\partial_{t}T)|\alpha\rangle+T(\partial_{t}|\alpha\rangle) \end{equation} And the commutation relation changes.
Does it ever happen or is it proven a generator of a Conservative quantity needs to be time independent?