I don't have that book, but if $\partial_a$, $\partial_b$ are Cartesian coordinates, the condition you provided are the coordinates of $\nabla \times \mathbf{F} = \mathbf{0}$,
with $\mathbf{F} = \dfrac{\mathbf{X}}{|\mathbf{X}|^2}$.
It's not hard to prove that $f = \ln \dfrac{|\mathbf{X}|}{X_0} $, by direct computation
$\partial_i f = \partial_i \left( \ln \dfrac{|\mathbf{X}|}{X_0} \right) = \dfrac{X_0}{|\mathbf{X}|} \dfrac{1}{X_0} \partial_i |\mathbf{X}| =\dfrac{1}{|\mathbf{X}|} \partial_i |\mathbf{X}|$
and remembering that $\partial_i |\mathbf{X}|= \frac{X_i}{|\mathbf{X}|}$ we eventually get
$\partial_i \left( \ln \dfrac{|\mathbf{X}|}{X_0} \right) = \frac{X_i}{|\mathbf{X}|^2}$
Given the condition on the curl, you can write $\mathbf{F}$ as the gradient of a scalar field, namely $\mathbf{F} = \nabla f$. Having established that, you can interpret the condition
$\partial_a \left( \dfrac{X_b}{X^2} \right) = \partial_b \left( \dfrac{X_a}{X^2} \right) $$\qquad \rightarrow \qquad$
$\partial_a F_b = \partial_b F_a$$\qquad \rightarrow \qquad$
$\partial_a \partial_b f = \partial_b \partial_a f$
with the Schwartz condition on mixed second derivatives.