You have the general rule of
$$\dot{{\rm R}}\,{\rm R}^{\intercal}=\boldsymbol{\omega}\times$$
which depending on how each ${\rm R}$ is defined results in either a rotation vector in the inertial frame or in the body frame.
That is the difference here between your $\omega_{21}$ and the book's $\omega_{21}$
It has to be that your $\omega_{21}$ is defined with the basis vectors of $F_2$, and the more common definition is to have everything in the same basis-vectors as the inertial frame.
That is unless there is some other mistake in the calculation. I did not follow through all of it because the notation is confusing me. I have proved the rotational kinematics myself many times, but using notation that I understand and I can interpret easily.
Consider a sequence of rotating frames, each i-th frame with ${\rm R}_i$ the 3×3 orientation matrix that transforms the local basis-vectors into the inertial basis-vectors.
Designate as $\mathbf{z}_i^{i-1}$ as the direction of rotation if the i-th frame in the i-1-th frame, and $\theta_i$ the angle of rotation. This describes the orientation of the i-th frame recursively from the orientation of the previous frame
$$ {\rm R}_{i}={\rm R}_{i-1}{\rm rot}(\boldsymbol{z}_{i}^{i-1},\,\theta_{i}) \tag{1}$$
where ${\rm rot}({\rm axis},\,{\rm angle})$ is an elementary rotation about a single axis, by an angle (use the Rodrigue's formula).
Note that the axis of rotation in the inertial basis-vectors is
$$ \boldsymbol{z}_{i}={\rm R}_{i-1}\boldsymbol{z}_{i}^{i-1} \tag{2} $$
If I re-arrange the rotational velocity expression ${\rm \dot{R}}\,{\rm R}^\intercal = \boldsymbol{\omega}_i \times$ in terms of the derivative I get the following expressions for the time-rate of rotations
$$\begin{aligned}\dot{{\rm R}}_{i-1} & =\boldsymbol{\omega}_{i-1}\times{\rm R}_{i-1}\\
\dot{{\rm R}}_{i} & =\boldsymbol{\omega}_{i}\times{\rm R}_{i}\\
\tfrac{{\rm d}}{{\rm d}t}{\rm rot}(\boldsymbol{z}_{i}^{i-1},\,\dot{\theta}_{i}) & =\left(\boldsymbol{z}_{i}^{i-1}\dot{\theta}_{i}\right)\times{\rm rot}(\boldsymbol{z}_{i}^{i-1},\,\theta_{i})
\end{aligned} \tag{3}$$
Now take the time derivative of (1) and apply the product rule.
$$\small \begin{aligned}{\rm \dot{R}}_{i} & ={\rm \dot{R}}_{i-1}{\rm rot}(\boldsymbol{z}_{i}^{i-1},\,\theta_{i})+{\rm R}_{i-1}\tfrac{{\rm d}}{{\rm d}t}{\rm rot}(\boldsymbol{z}_{i}^{i-1},\,\theta_{i})\\
\boldsymbol{\omega}_{i}\times{\rm R}_{i} & =\boldsymbol{\omega}_{i-1}\times{\rm R}_{i-1}{\rm rot}(\boldsymbol{z}_{i}^{i-1},\,\theta_{i})+{\rm R}_{i-1}\left(\left(\boldsymbol{z}_{i}^{i-1}\theta_{i}\right)\times{\rm rot}(\boldsymbol{z}_{i}^{i-1},\,\theta_{i})\right)\\
\boldsymbol{\omega}_{i}\times{\rm R}_{i} & =\boldsymbol{\omega}_{i-1}\times{\rm R}_{i}+\left({\rm R}_{i-1}\boldsymbol{z}_{i}^{i-1}\dot{\theta}_{i}\right)\times\left({\rm R}_{i-1}{\rm rot}(\boldsymbol{z}_{i}^{i-1},\,\theta_{i})\right)\\
\boldsymbol{\omega}_{i}\times{\rm R}_{i} & =\boldsymbol{\omega}_{i-1}\times{\rm R}_{i}+\left({\rm R}_{i-1}\boldsymbol{z}_{i}^{i-1}\dot{\theta}_{i}\right)\times{\rm R}_{i}\\
\end{aligned} \tag{4}$$
Follow with with collecting terms, and factoring out the ${\rm R}_i$ term to get
$$ \begin{aligned}
\boldsymbol{\omega}_{i} & =\boldsymbol{\omega}_{i-1}+{\rm R}_{i-1}\boldsymbol{z}_{i}^{i-1}\dot{\theta}_{i}\\
\boldsymbol{\omega}_{i} & =\boldsymbol{\omega}_{i-1}+\boldsymbol{z}_{i}\dot{\theta}_{i} \end{aligned} \tag{5} $$
which is interpreted as the relative rotation velocity between body i and its predecessor is $\boldsymbol{z}_{i}^{i-1}\dot{\theta}_{i}$ in the local basis-vectors of frame i-1, and $\boldsymbol{z}_{i}\dot{\theta}_{i}$ in the inertial basis-vectors.