0

Spin up is described by a vector $\uparrow=(1\;0)^T$ and spin down by $\downarrow=(0\;1)^T$. When we write e.g. $\uparrow \uparrow$ what kind of product does it mean?

tohoyn
  • 207

1 Answers1

2

$\newcommand{\bra}[1]{\langle #1 \rvert}$ $\newcommand{\ket}[1]{\lvert #1 \rangle}$ $\newcommand{\avec}[2]{\left(\begin{matrix}#1 \\ #2 \end{matrix}\right)}$ $\newcommand{\bvec}[4]{\left(\begin{matrix}#1 \\ #2 \\ #3 \\ #4 \end{matrix}\right)}$

Spin up is described by a vector $\uparrow=(1\;0)^T$ and spin down by $\downarrow=(0\;1)^T$. When we write e.g. $\uparrow \uparrow$ what kind of product does it mean?

As stated in the comments, this is a tensor product.

Just like the original vectors can be represented by matrices (2-by-1 matrices), so too the tensor product vectors can be represented by matrices (4-by-1 matrices).

For example: $$ \uparrow\uparrow = \avec{1}{0}\times\avec{1}{0} = \avec{1\avec{1}{0}}{0\avec{1}{0}} = \bvec{1}{0}{0}{0} $$

For example: $$ \uparrow\downarrow = \avec{1}{0}\times\avec{0}{1} = \avec{1\avec{0}{1}}{0\avec{0}{1}} = \bvec{0}{1}{0}{0} $$

And so on.

Frobenius
  • 15,613
hft
  • 19,536