2

The partial of tensor is equal

$$\partial_{\mu}T^{\mu j} = \frac{\partial}{\partial t}T^{0j} + \nabla_{j} T^{ij} = -(\rho \vec{E} + \vec{j}\; \times \vec{B})^{j}$$

where does it come from?

In the equation above the term

$$T^{0j} = \vec{S} = \frac{1}{4 \pi}\vec{E} \; \times \vec{B}$$

I recognize as Poynting vector.

From momentum conservation

$$\frac{d\vec{P}^{j}}{dt}=0$$

follows equation

$$\frac{d\vec{P}^{j}}{dt}= - \int_{V} d^{3} x \rho E^{j} - \int_{V} d^{3} x (\vec{j} \; \times \vec{B})^{j} - \int_{V} d \sigma_{i} T^{ij}$$

where $$P = \int_{V} d^{3} x \vec{S}$$

I wanted to know what right hand side presents?

$$RHS = - \int_{V} d^{3} x \rho E^{j} - \int_{V} d^{3} x (\vec{j} \; \times \vec{B})^{j} - \int_{V} d \sigma_{i} T^{ij}$$

I've read that it is the Poynting vector evaluating in time, but I didn't see that.

Thank you for your explanation with mathematical description.

ACuriousMind
  • 124,833

0 Answers0