Take the two Hilbert spaces $ H_1 = H_2 = C^2$
The basis of $H_1$ is : $ \{ | 1 : + \rangle , |1 : - \rangle \} $ and for $H_2$ : $ \{ | 2 : + \rangle , |2 : - \rangle \} $
Forming the composite Hilbert space: $$ H = H_1 \otimes H_2 $$
We get the base of $H$ : $ \{ | 1 : + \rangle \otimes | 2 : + \rangle , | 1 : + \rangle \otimes | 2 : - \rangle , | 1 : - \rangle \otimes | 2 : - \rangle, | 1 : - \rangle \otimes | 2 : + \rangle \} $. Written more simply as $$ \{| + + \rangle , | + - \rangle , | - - \rangle , |- + \rangle \} $$
Let the composite system be in a ket $$ | \Psi \rangle = \dfrac{ |+ - \rangle - | - + \rangle}{\sqrt{2}} $$
I wish to calculate the partial trace of the density operator with respect to $H_2$
$$ \rho_1 = tr_2 \rho = tr_2 | \Psi \rangle \langle \Psi| = \langle 2 : + | \Psi \rangle \langle \Psi | 2 : + \rangle + \langle 2 : - | \Psi \rangle \langle \Psi | 2 : - \rangle $$
I cannot get past this step , since I don't know what: $$\langle 2: + | + - \rangle ?$$
Is it just $ \langle 2: + | 2: - \rangle = 0 $ ?
I know that for a vector space that is the tensor product of two other vector spaces the scalar product is :
$$ (\langle 1:n' |\otimes \langle 2: p' |)| (|1 : n \rangle \otimes |2:p \rangle) = \ \langle 1:n'| 1 : n \rangle \times \langle 2: p' | 2:p \rangle $$
What is then :
$$ \langle 2: p' | (|1 : n \rangle \otimes |2:p \rangle) ? $$